ECCO: Leveraging Cross-Camera Correlations for
Efficient Live Video Continuous Learning

ABSTRACT

Recent advances in video analytics address real-time data
drift by continuously retraining specialized, lightweight DNN
models for individual cameras. However, the current prac-
tice of retraining a separate model for each camera suffers
from high compute and communication costs, making it
unscalable. We present ECCO, a new video analytics frame-
work designed for resource-efficient continuous learning. The
key insight is that the data drift, which necessitates model
retraining, often shows temporal and spatial correlations
across nearby cameras. By identifying cameras that experi-
ence similar drift and retraining a shared model for them,
ECCO can substantially reduce the associated compute and
communication costs. Specifically, ECCO introduces: (i) a
lightweight grouping algorithm that dynamically forms and
updates camera groups; (ii) a GPU allocator that dynamically
assigns GPU resources across different groups to improve re-
training accuracy and ensure fairness; and (iii) a transmission
controller at each camera that configures frame sampling and
coordinates bandwidth sharing with other cameras based on
its assigned GPU resources. We conducted extensive eval-
uations on three distinctive datasets for two vision tasks.
Compared to leading baselines, ECCO improves retraining
accuracy by 6.7%-18.1% using the same compute and com-
munication resources, or supports 3.3X more concurrent
cameras at the same accuracy.

1 INTRODUCTION

The rapid expansion of camera deployments [1, 12, 18] is
driving a growing demand for live video analytics, with the
market expected to reach 22.6 billion USD by 2028 [34]. Live
video analytics uses deep neural network (DNN) models
to perform vision tasks such as object detection and classi-
fication. These analytics are at the core of applications in
diverse fields like enterprise security [30], traffic monitoring
[44], and autonomous driving [58]. To process live video
streams in real time and ensure low-latency results, it is of-
ten crucial to deploy DNNs and run inference directly on
edge devices [5, 20]. However, since edge devices often have
limited resources (with less powerful GPUs [2, 3]), these de-
vices typically use lightweight, specialized models instead
of complex, generic models [17, 36].

These lightweight models are initially trained using rep-
resentative data from each camera. Once deployed, these
models face challenges from data drift, where the live video

Independent Retraining Group Retraining

I
I
Retraining | |Retraining Retraining } Retraining Retraining
Eef BE | [ B | i B
NAetworl; } Network
T lﬂiﬂ = |8 Ilﬂﬂﬁ lﬁﬂﬁ ]ltﬂd Ilﬁ

0158 056 - D6 05 O3 - D
ge Device (5] Sampled frames [ Lightweight DNN )] Camera

Figure 1: Frameworks of existing continuous retraining
systems (left) and our proposed system (right).

data changes significantly from the initial training data. For
example, cameras deployed in urban areas or mounted on
moving vehicles may record changes in object types, activi-
ties, lighting conditions, or crowd densities over time. As a
result, the accuracy of the DNN’s predictions can substan-
tially decline. A promising solution to tackle data drift is
continuous learning. This approach retrains the lightweight
models on an edge server using more recent video frames
transmitted from the cameras, helping the models to adapt
to new data patterns. Recent studies [25, 37] have shown the
benefits of continuous learning in enhancing the robustness
and accuracy of video analytics systems.

A key challenge in continuous learning is resource effi-
ciency, as practical deployments are often constrained by
compute and communication resources. Two critical resources
in this setting are the GPUs at the edge server and the band-
width between the distributed cameras and the server. Prior
works have only focused on improving GPU efficiency (i.e.,
model accuracy per GPU unit). For example, Ekya [7] and
Adalnf [45] optimize GPU scheduling across retraining (and
inference) tasks from multiple cameras. RECL [24] enhances
GPU efficiency by reusing historical models as starting points
for retraining. However, these methods have two significant
limitations. First, they largely overlook bandwidth efficiency,
which is related to GPU usage and should be optimized
jointly. Second, all these systems assume training a separate
model for each camera, a strategy we refer to as “independent
retraining” (see Fig. 1 (left)). This design can result in redun-
dant GPU computation, especially when cameras exhibit
correlated data patterns.

Core idea: We introduce group retraining, a new approach
that groups cameras experiencing similar data drift and re-
trains a shared model using their collective data (see Fig. 1
(right)). The rationale for group retraining is two-fold. First,
data drift often exhibits temporal and spatial correlation



among some cameras, e.g., traffic cameras at the same inter-
section or cameras mounted on vehicles traveling together
may encounter similar environmental changes. Second, light-
weight models, despite their compact architecture, can gen-
eralize across similar data distributions and may even benefit
from subtle variations observed by different cameras [28, 32].
By retraining one model for a group of cameras instead of
individual models for each, we reduce the number of models
that need retraining. This reduces compute costs and lowers
the data transmission requirements for each camera to the
edge server.

Technical challenges: Realizing the potential of group re-
training involves addressing several system-level challenges.
First, efficiently identify cameras with similar data drift is
challenging because video streams are high-dimensional,
making direct cross-camera comparisons computationally
expensive. Moreover, as live video content changes continu-
ously, camera grouping cannot be a one-time operation and
must be updated over time. Second, allocating GPU resources
efficiently across camera groups is non-trivial. As we will
show in §3.1, naive extensions of existing GPU allocation
algorithms are ill-suited for group retraining. They tend to
favor larger groups while under-provisioning smaller ones,
resulting in unfairness among cameras. Third, in addition
to GPU resources, network bandwidth is a critical yet often
overlooked constraint. Since different groups’ models are
retrained using live data transmitted from their distributed
cameras, bandwidth allocation across groups must be coordi-
nated with GPU allocation to maximize retraining efficiency.
This coordination is challenging because it often requires as-
signing unequal bandwidth shares to different groups, which
may conflict with the equal-share behavior enforced by stan-
dard congestion control mechanisms.

Our solution: We introduce ECCO, a new continuous re-
training framework for live video analytics that leverages
cross-camera correlations to improve resource efficiency,
scalability, and responsiveness. ECCO addresses the above
challenges through three key strategies: (i) A lightweight
grouping algorithm that first narrows down candidate cam-
eras using metadata (e.g., drift time and location), and then
makes grouping decisions by evaluating the accuracy gain.
(ii) A new formulation of the GPU allocation problem tai-
lored for group retraining, along with a GPU allocator that
jointly optimizes for overall performance and fairness across
groups. (iii) A transmission controller at each camera that
adapts frame sampling (data volume) to match its assigned
GPU resource and adjusts its transmission rate using a cus-
tomized congestion control algorithm, that enables band-
width allocation across groups in proportion to their GPU
shares in a best-effort manner.

We implemented and evaluated ECCO on two computer
vision tasks: object detection and instance segmentation, and
compared it with state-of-the-art video analytics systems for
three datasets. Using the same compute and communica-
tion resources, ECCO improves the mean Average Precision
(mAP) by 6.7%-16.6% for object detection and 9.3%-18.1% for
instance segmentation over strong baselines. While this im-
provement may appear to be a small change in accuracy, in
practice this improvement translates to supporting 3.3x more
cameras at the same accuracy level. We also show that ECCO
’s GPU allocator optimizes both performance and fairness,
which significantly reduces the accuracy gap across groups
while maintains comparable overall accuracy to the baseline
allocator. The transmission controller improves bandwidth
efficiency, requiring only 25%-33% of the bandwidth used
by baselines to reach similar accuracy with the same GPU
budget. Another finding is that ECCO’s advantage in respon-
siveness becomes more pronounced under low-bandwidth
conditions, reducing retraining latency by more than 5x due
to group retraining’s effective data aggregation and natural
model reuse within the group.

2 MOTIVATION AND OBSERVATIONS
2.1 Limitations of Independent Retraining

To highlight the inefficiencies of current retraining approaches,
we first revisit the standard retraining pipeline shown in
Fig. 1 (left). Edge devices perform real-time inference on live
video using local lightweight models (“students”). When data
drift is detected!, the edge device sends a retraining request
to the edge server and begins continuously sampling and
transmitting video frames as retraining data. The server uses
a high-accuracy but resource-intensive model (“teacher”) to
annotate these frames, retrains a separate student model for
each camera using its own data, and returns the updated
model to the corresponding device.

This design faces an obvious scalability challenge: as the
number of cameras increases, the retraining workload grows
linearly, placing significant strain on both GPU and band-
width resources, which increases retraining latency. More-
over, when multiple cameras experience similar data drift,
independently retraining separate models becomes redun-
dant and inefficient.

2.2 Why Group Retraining?

Cross-camera correlations in data drift. The main insight
motivating our work is that data drift among cameras can
exhibit spatial and temporal correlations. Cameras that are
geographically close often experience similar environmental
changes at similar times. Fig. 2(a) and (b) illustrate examples

ISeveral prior works [4, 21, 40] have been proposed to detect data drift or
scene changes in video streams and can serve as retraining triggers.
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Figure 2: A motivation study. (a) & (b): Example frames from two public datasets showing that data drift exhibits
significant temporal and spatial correlations among cameras. (c) Model accuracy of three retraining settings.

of such drift using two representative camera types: static
cameras from the WILDTRACK [8] dataset and mobile cam-
eras from the MDOT [35] dataset. In WILDTRACK, static
cameras monitoring a plaza show similar changes in fore-
ground content (e.g., pedestrian density and behavior). In
MDOT, mobile cameras mounted on drones flying in forma-
tion capture similar shifts in both foreground (e.g., vehicle
densities) and background (e.g., buildings and vegetation)
as they move through urban and suburban areas. This phe-
nomenon is also observed in other public datasets such as
Cityflow [47], Bellevue Traffic Video [10], VERI-Wild [33],
and DukeMTMC [43]. These examples suggest that indepen-
dent retraining can be inefficient when data distributions
across cameras are closely aligned.

We propose a new approach, group retraining, which ag-
gregates retraining requests from cameras with correlated
data drift and uses their collective data to retrain a single
shared model. While prior work has used inter-camera cor-
relations for tasks such as object re-identification [19] or
video inference configuration [22], our approach is, to our
knowledge, the first to exploit these correlations to reduce
the cost of model retraining.

Benefits of group retraining. To demonstrate the poten-
tial benefits of group retraining, we conduct a case study
using three drone videos selected from the MDOT dataset,
identified as correlated based on manual inspection. These
videos exhibit similar scene changes as the drones fly in for-
mation, resembling the scenario illustrated in Fig. 2(b). We
use a high-performance object detection model, YOLO11x
(194.9 BFLOPs), as the teacher and a lightweight version,
YOLO11n (6.5 BFLOPs), as the student model. We compare
three retraining settings: (i) Independent retraining: Each
camera retrains its own model using 1 GPU (3 GPUs in to-
tal). (ii) Group retraining (3 GPU): A shared model is trained
using data from all three cameras with 3 GPUs. (iii) Group
retraining (1 GPU): The shared model is retrained using the
same data with only 1 GPU.

Fig. 2(c) reports object detection accuracy over time, mea-
sured by mean Average Precision (mAP) averaged across

the three cameras. We observe that: (i) With the same GPU
resources, group retraining (green) achieves higher accuracy
and lower retraining latency than independent retraining
(red). (ii) Even with only 1 GPU, group retraining performs
comparably to independent retraining using 3 GPUs. These
results suggest that group retraining can significantly reduce
retraining cost in GPU use, while improving responsiveness.

3 DESIGN OF ECCO

This paper proposes ECCO, a continuous learning system
for live video analytics that improves compute and commu-
nication efficiency by leveraging cross-camera correlations
through group retraining.

Overall architecture (Fig.3 and Fig.4): ECCO comprises
a server, multiple edge devices (cameras), and the network
connecting them. We make no assumptions about the under-
lying network connectivity.

Fig.3 illustrates steady-state operations, where cameras
have already been grouped based on data drift similarity.
Each group’s retraining is handled by a single job. Retraining
is managed in discrete retraining windows, which serve as
the basic unit for coordination and resource management.
Within each retraining window, ECCO improves resource
efficiency and retraining accuracy through two coordinated
modules.

The GPU allocator at the server dynamically distributes
GPU resources across groups, guided by an objective that
balances overall retraining performance with fairness among
groups (§3.1). The GPU allocation information is transmitted
to cameras to guide their transmission strategies.

To maximize retraining accuracy, the transmission con-
troller at each camera configures training data and regu-
lates transmission to match the allocated GPU budget. First,
it selects a sampling configuration (frame rate and resolu-
tion) based on both the GPU budget and the observed scene
characteristics (§3.2.1). Second, it aligns its bandwidth us-
age with the assigned GPU share. This is achieved using
a customized GAIMD congestion control algorithm [55],
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Figure 3: Steady state of ECCO. The server-side GPU
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ordinate to support group retraining. Colors indicate
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which enforces flows to compete with controlled aggressive-
ness proportional to their GPU share, thereby approximating
GPU-proportional bandwidth allocation under network con-
straints (§3.2.2). While non-AIMD approaches are possible,
they are not the focus of our efforts.

Fig.4 illustrates how camera groups are created and up-
dated in response to data drift. Camera grouping involves
two stages. The first is initial grouping, triggered when a
camera detects drift and initiates a retraining request. At
this point, the server determines whether the camera should
join an existing group that targets similar data drift or form
a new group. The second is regrouping, performed period-
ically on existing groups during retraining. This process
adapts group membership to evolving data distributions in
live video streams, as some cameras may gradually drift and
no longer remain similar to others in their current group.

3.1 GPU Allocation for Group Retraining

To scale and serve more cameras, ECCO must efficiently
allocate GPU resources across camera groups. Unlike exist-
ing allocation methods designed for independent retraining
[7, 24, 45], group retraining introduces new challenges that
those methods do not address. We thus formulate a new opti-
mization objective that balances overall retraining accuracy
with fairness across groups. To achieve this, we design a
GPU allocation algorithm that tracks each group’s current
accuracy and its accuracy improvement with added compute
resources. It then dynamically allocates more GPU resources
to groups that either have low accuracy or show larger im-
provement when given more GPU resources.

Limitations of existing approaches: Prior work typically
allocates GPU resources to maximize total accuracy improve-
ment (or average accuracy) across all cameras over a re-
training window. However, directly applying this strategy to
group retraining introduces bias: it implicitly favors larger
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Figure 4: Dynamic camera grouping in ECCO. Initial
grouping is triggered by retraining requests, while pe-
riodic regrouping updates groups during retraining.

groups, since improvements from a group with more cameras
contribute more to the global accuracy sum.

To illustrate this issue, consider two groups: G1 with four

cameras and G2 with one. If given equal GPU time, G1’s
model accuracy improves by 10%, and G2’s by 15%. Since
G1’s improvement benefits four cameras, its total contribu-
tion is 4 X 10% = 40%, while G2’s is only 15%. Thus, existing
algorithms [7, 24] tend to allocate most GPU resources to G1,
leading to prolonged starvation for G2—until the training
efficiency of G1 (i.e., accuracy gain per GPU second) natu-
rally declines as training converges. The root cause is that
existing objectives implicitly weight groups by size, which
is suitable for independent retraining but introduces a sys-
tematic allocation bias against smaller groups in the group
retraining setting.
Objective reformulation: To address this, we define a new
objective that balances system-wide accuracy and fairness
across groups. Consider a set of retraining jobs J, one per
group, running on G GPUs over a retraining window T of
duration ||T||, with total compute capacity G||T|| GPU-time.
Let Aj(g;) be the accuracy of group j’s model after receiving
g; GPU-time, averaged over its n; camera members. We
optimize:

B
Zjeg n;A;j(9;)
max aM +minA;(g;)| st Z g; < G|IT||
{9j}jeg Zjej nf jeg =

(1)
The first term captures the overall average accuracy across all
groups, weighted by nf , where < 1 controls the influence
of group size, i.e., how much distinction is made between
groups of different sizes. The second term promotes fairness
by maximizing the worst-performing group’s accuracy. The
parameter « adjusts the balance between the two goals.

GPU allocation algorithm: We build on the resource allo-
cation algorithm in [24] and propose a modified version tai-
lored to our optimization objective. We time-share the GPU
across multiple retraining jobs by dividing a retraining win-
dow T into W micro-windows. During each micro-window,
one retraining job exclusively uses all GPUs. The key idea



Algorithm 1 GPU Allocation for Group Retraining

1: Input: retraining jobs 7, retraining window size of W
micro-windows, constants «a,
budget « W, initialize Acc[], AccGain[], ObjGain][]
procedure MICRORETRAINING())

acc; < j.EVAL()

Train job j for one micro-window

accy < j.EVAL()

budget « budget — 1

Acc[j] « accyr; AccGain[j] < accy — acc;

9: procedure CALOBJECTIVEGAIN
10: for jin J do

11 ObjGain[j] « 5

B
an;

7 AccGain| j]
jeg
12: ObjGain[argmin(Acc)]+ = AccGain[argmin(Acc)]
13: for jin J do > Initial training pass

14: MicroRetraining(j); CalOb jectiveGain()
15: Estimate per-group GPU resource (§3.2)

16: while budget > 0 do

17: j < argmax(ObjGain)

18: MicroRetraining(j); CalOb jectiveGain()

is to greedily assign GPU time to the group that yields the
highest marginal improvement in the objective Eq. 1.
Algorithm 1 outlines the procedure. It starts with an initial
training pass (Lines 13—14), where each job trains for one
micro-window to establish its short-term accuracy trajectory.
After this, we measure each job’s “accuracy gain”, defined
as the improvement in accuracy before and after training
(Lines 3-8). This is then converted into a job-specific “objec-
tive gain” (Lines 9-12), which estimates its contribution to
the overall objective (Eq.1). For most jobs, the objective gain
;
corresponds to the first term of Eq.1, 5 anjnﬁAccGain, cap-
turing their marginal contribution to th(je \kae]ighted average
accuracy. For the lowest-accuracy job, we also include the

B
an;

second term of Eq. 1, giving (Z 7 +1)AccGain, where the

jeg s
additional AccGain serves as ]ajfaijrness bonus to promote
balance and prevent starvation. After this initialization, the
algorithm repeatedly selects the job with the highest objec-
tive gain and assigns it the next micro-window (Lines 16-18).
Objective gains are updated after each micro-window to re-
flect the latest performance trends. This greedy allocation
continues until the GPU time budget is exhausted, approxi-
mating maximization of Eq. 1 under the GPU constraint.
GPU allocation estimation for transmission control:

While the actual GPU allocation is performed dynamically
as detailed above, the transmission controller at each camera
(§3.2) requires an upfront estimate of its group’s expected

compute budget to guide transmission. To provide this signal,
the server uses the objective gains from the initial training
pass to estimate each group’s GPU share for the current
window (Line 15). Specifically, the estimated GPU resource
c; for group j is proportional to its objective gain relative
to all groups: ¢; = %GHT”. We also define p; =
ObjGain][ j]
2ieq ObjGain[i]
j. The pair (cj, p;) is then communicated to the group’s
cameras as GPU allocation information.

as the normalized GPU share weight for group

3.2 Resource-Aware Transmission Control

At the camera side, video transmission is governed by two ex-
ternal resources: GPU allocation and bandwidth availability.
GPU allocation is decided by the server, which determines
both (i) the group’s capacity to consume data and (ii) its
relative priority for receiving more data. In practice, this
capacity can be expressed as the maximum number of pixels
per second that the GPU can process. Bandwidth availability,
in contrast, is not explicitly allocated; it is constrained by
network conditions and realized through congestion control.

Given these constraints, the camera controls three param-
eters of transmission: frame rate, resolution, and compres-
sion level. We refer to frame rate and resolution together as
the sampling configuration. Whenever the server provides
updated GPU allocation information, the camera selects a
sampling configuration whose frame rate-resolution prod-
uct (pixels per second) stays within the GPU budget; multi-
ple valid choices exist, and we discuss selection strategies
in §3.2.1. During streaming, the camera then adjusts the
compression level continuously to ensure the selected con-
figuration can be delivered within the bandwidth actually
achieved on the network. To approximate GPU-proportional
weighted bandwidth allocation while respecting network
constraints, we employ a customized GAIMD congestion
control algorithm.

3.2.1 Adaptation of Sampling Configuration. The sam-
pling configuration impacts retraining quality because a lim-
ited GPU budget caps training throughput (e.g., total number
of pixels processed per second [46]). As a result, increasing
frame rate often requires lowering resolution, and vice versa.
Retraining performance is therefore tightly coupled with
how this tradeoff is managed under GPU constraints.

To study this tradeoff, we conduct a case study using two
representative camera types: a static, high-mounted traffic
camera (A) and a mobile, vehicle-mounted camera (B), both
simulated in the CARLA [13] autonomous driving simulator
(see Fig. 5). Using the model setup in §2.2, we retrain a model
for each camera using various sampling configurations while
keeping the GPU budget fixed. To ensure a fair comparison,
we fix the transmission bitrate to 1 Mbps across all settings.
This isolates the impact of sampling choices under consistent



Resolution=
43 960 +480
/Q\, _ |=6a0e320
§35
o
//-0—0\.' % /
€
25
05 1 2 4 8 150.5 1 2 4 8

Frame Rate (FPS)
(a) Camera A

Frame Rate (FPS)
(b) Camera B
Figure 5: Impact of sampling configurations (frame
rate and resolution) on retraining accuracy under a
fixed GPU budget for two distinct camera types.

Camera B

GPU and bandwidth conditions. Fig. 5 shows the resulting
retraining accuracy across configurations.

Two observations emerge. First, with the same GPU bud-
get, retraining accuracy varies significantly across sampling
configurations—by up to 2X. Second, the optimal configura-
tion (circled in the figure) varies across camera types. This
variation stems from intrinsic differences in camera charac-
teristics, such as placement and mobility. The static camera
benefits more from higher resolution to capture small, distant
objects, while the mobile camera benefits more from higher
frame rates to adapt to rapid scene changes. These results
highlight the importance of camera-specific configuration
based on GPU budgets.

We leverage this observation to guide the design of our
sampling configuration selection method. First, each camera
conducts offline profiling to evaluate the accuracy of different
frame rate and resolution combinations ( f, q) across different
GPU budget levels. Given that retraining occurs within fixed-
length retraining windows, which are further discretized into
microwindows, the number of distinct GPU resource levels is
limited. This results in a lookup table that maps GPU budgets
to their corresponding optimal sampling configuration.

At runtime, upon receiving its group’s GPU allocation c},
each camera queries its table to select the optimal sampling
configuration (f*, ¢*). To balance data contributions across
the n; group members, it scales the frame rate to f*/n; while
keeping ¢* unchanged. This ensures that the total volume
of sampled frames aligns with the group’s compute capacity.

3.22  Adaptive Weighted Bandwidth Allocation. After sam-
pling, each camera encodes frames based on available band-
width and transmits them to the server. Since they all send to
the same destination, cameras naturally share one or more
network links, leading to contention and bandwidth bottle-
necks. A naive equal-allocation strategy can result in ineffi-
cient bandwidth usage, especially considering GPU resources
can be allocated unevenly across cameras. We argue that
“utility-based” bandwidth allocation, where each camera’s

Table 1: Retraining accuracy under equal vs. GPU-
proportional bandwidth allocation.

BW allocation

Camera A CameraB Overall

schemes mAP (%) mAP (%) mAP (%)
Equal (1.5 Mbps each) 34.7 26.1 30.4
Proportional (0.9/2.1) 334 30.8 32.1

bandwidth share is proportional to its GPU allocation, bet-
ter aligns data delivery with compute capacity and leads to
improved retraining quality.

To illustrate this, we conduct a simple case study using
cameras A and B in Fig. 5. Camera A starts retraining with a
model accuracy of 28% mAP, and camera B with 16%. To help
B catch up and improve overall performance, we allocate 30%
of the GPU to A and 70% to B. Each camera uses its optimal
sampling configuration under the assigned GPU budget. We
fix the total uplink bandwidth to 3 Mbps and compare two
bandwidth allocation strategies: equal allocation vs. GPU-
proportional allocation (i.e., 0.9 Mbps for A and 2.1 Mbps for
B).

Table 1 shows that equal bandwidth allocation leads to
lower retraining accuracy for the high-GPU camera B, likely
due to delayed, dropped, or degraded frames. This results in
under-utilization of compute resources and reduced overall
retraining accuracy. In contrast, proportional allocation al-
lows each camera to deliver training frames in time to match
its GPU share, thus improving retraining accuracy.

Achieving such GPU-proportional weighted bandwidth
allocation is however challenging because of the distributed
and heterogeneous nature of the network. Cameras connect
to the server through diverse paths with varying conditions,
and two types of constraints can occur together: (i) multiple
cameras may share an uplink bottleneck with unknown ca-
pacity; and (ii) individual cameras, especially mobile ones,
may also be constrained by their own weak local links.

To address this, we design a distributed rate control mech-
anism based on the GAIMD (Generalized Additive Increase
Multiplicative Decrease) congestion control algorithm [55].
The core idea is to scale each camera’s aggressiveness in
bandwidth competition according to its GPU share. By cus-
tomizing the GAIMD parameters, each camera converges to a
steady-state sending rate that approximates GPU-proportional
bandwidth sharing.

Specifically, each camera tunes its GAIMD parameters, the
additive increase factor @ and multiplicative decrease factor
B, to control its transmission rate. This design leverages a
known result: the steady-state throughput of a GAIMD flow
is roughly proportional to /(1 — f) [56]. Based on this,
upon receiving the GPU share weight p; from the server,
each camera fixes § = 0.5 and sets « = p;/n;, where n; is
the number of cameras in its group j. The resulting GAIMD
rate serves as the target sending rate for the video stream.



Algorithm 2 Dynamic Camera Grouping Algorithm

1: Input: retraining jobs 7, new retraining request 7
2: procedure GROUPREQUEST(T, 7)
3: for jin J do

4 if Vrinj,|r.t—7.t| <eand|r.doc—7f.loc| <8
then > Correlation filtering

5: accj « j.EVAL(7.subsamples)

6: if acc; > f.acc then » Performance check

7 JobCandidatel j] < acc;

8: if JobCandidate # 0 then

9: j « argmax(JobCandidate); j « j U {#}

10: else

11: j « InitializeNewJob(?); T «— J U {j}

12: procedure UPDATEGROUPING(J)

13: while each retraining window n ends do

14: for jin J do

15: for rin j do

16: r.acc, < j.EVAL(r.subsamples)

17: if “eSRtEesl < —p (p > 0) then

18: Jj-Remove(r); r.Update(t,loc);

19: GroupRequest(J, 1)

The video encoder tracks this target and adjusts compression
(quantization) in real time to stay close to it, while keeping
the selected frame rate and resolution fixed.

A key advantage of this approach is that it requires neither
explicit coordination between cameras nor knowledge of the
network topology. It automatically adapts to both shared
bottlenecks and individual camera constraints. While some
cameras may fall short of their target bandwidth due to
local network conditions, the system still approximates GPU-
proportional bandwidth allocation in a best-effort manner.

3.3 Dynamic Camera Grouping

While the previous two subsections focus on steady-state
operations for group retraining, ECCO must also handle the
creation and update of camera groups to make retraining
effective. This includes initial grouping to accommodate new
retraining requests and periodic checks to determine whether
existing groups remain valid or require regrouping. To keep
the process lightweight, ECCO exploits metadata for fast pre-
filtering, which narrows down candidate groups and avoids
unnecessary computation. Final grouping and regrouping de-
cisions are then based on actual accuracy improvements that
directly reflect the goal of retraining. Algorithm 2 outlines
this process.

Grouping initialization for new retraining requests: At
runtime, each camera detects data drift locally and issues a
retraining request when drift is observed. Several existing
techniques [4, 21, 40] can be used for drift detection. The

request includes metadata (request time and location), sam-
pled frames, and a copy of the device’s lightweight model.
Upon receiving the request, ECCO checks whether any on-
going retraining jobs (groups) show temporal and spatial
correlations with the new request. It compares the new re-
quest’s metadata against those in ongoing jobs to determine
if they fall within a predefined time window and geographi-
cal range (Line 4). The rationale is that cameras operating
close in space often experience similar data drifts at similar
times. If no correlated group is found, ECCO initiates a new
retraining job for the request, starting with the device’s sent
model and sampled frames (Line 11).

If correlated groups are found, ECCO evaluates these jobs’
model performance using a small subset of the sample frames
from the new request (Line 5). The model that shows the most
significant improvement on the new request is selected, and
the new request is then integrated into the corresponding
job; this involves adding its metadata to the job’s metadata
and aggregating its sample frames into the job’s training data
(Line 9). This performance check ensures that the grouping
decision is grounded in actual model accuracy rather than
relying solely on metadata similarity, thereby preventing
incorrect group assignments that could harm retraining ac-
curacy. Since this grouping process is efficient, the delay
it introduces is negligible compared to the duration of a
retraining window.

Periodic reevaluation of existing groups: Since video
content evolves over time, retraining groups must be up-
dated dynamically. For example, mobile cameras in a fleet
may initially share similar scenes and be grouped together,
but changes in routes can cause their data distributions to
diverge. To account for such dynamics, ECCO periodically re-
assesses existing groups at the end of each retraining window.
It iteratively evaluates the performance of every group model
on each camera member and compares it to the performance
in the previous window (Line 16-17). If a camera’s accuracy
drops beyond a threshold, it signals that the camera has un-
dergone a second drift during the window and no longer
aligns with the group’s data distribution. The camera is then
removed from the group. There can be situations where only
some cameras are removed from a group, and others where
all are removed due to group-wide new drift. In either case,
each removed camera is treated as a “new” retraining request
with updated metadata and reprocessed through the initial
grouping logic. This allows removed cameras to form new
groups if they now share similar data distributions.

4 IMPLEMENTATION AND
EXPERIMENTAL SETUP

We implement ECCO in Python, using the Ultralytics frame-
work [49] (built on PyTorch [39]) for both model training and



inference. The system runs on a server equipped with five
NVIDIA GeForce RTX 4090 GPUs. To emulate cameras and
their transmission to the server, we use a hybrid setup that
combines Docker-based container emulation and NS-3 [42]
simulation.

For each retraining window, we run an NS-3 simulation to
generate per-camera bandwidth traces over time, based on
GAIMD-driven, GPU-aware bandwidth allocation (§3.2.2).
Each camera is emulated as an independent Docker container
on the server. At the start of each window, each container
encodes its video at a selected frame rate and resolution
(§3.2.1) using FFmpeg. During streaming, video is split into 1-
second segments. For each segment, FFmpeg’s target bitrate
is set to the average bandwidth of the corresponding NS-
3 trace segment, so that compression adapts automatically.
Linux traffic control (tc) enforces the NS-3 trace by shaping
outgoing packets to match the simulated bandwidth.

Datasets: We evaluate ECCO using three diverse datasets. (i)
CityFlow dataset [47] includes over 3 hours of synchronized
videos captured by 40 traffic cameras at 10 city intersections.
(if) MDOT dataset [35] consists of a total of 155 groups of
video clips (totaling more than 259k frames) captured by
five drones. We arranged video clips from the same cam-
era chronologically to create continuous video streams. (iii)
CARLA simulated datasets: The core concept behind ECCO in-
volves leveraging the correlations between multiple cameras.
To assess how these correlations affect ECCO’s performance,
it is essential to have datasets that feature videos with vary-
ing degrees of similarity. However, such datasets are rare in
public collections. To address this, we employ the CARLA
simulator [13] to create multiple datasets. CARLA is an au-
tonomous driving simulator built on the Unreal Engine [16],
which has been used in developing industrial autonomous ve-
hicle systems like Apollo [6] and Autoware [15]. We generate
traffic flows, place traffic cameras at varying distances from
each other, and record the videos. By altering the positions
of the cameras—from close proximity to widely spaced—we
generate datasets that exhibit different levels of camera simi-
larity.

Models: We demonstrate ECCO ’s performance on two ma-
chine learning tasks — object detection and instance segmen-
tation. Instance segmentation is a more complex computer vi-
sion task compared to detection. For object detection, we use
YOLO11-Nano and YOLO11-X [48] as student and teacher
models, respectively. Instance segmentation used YOLO11n-
Seg and YOLO11x-Seg for the student and teacher models.
All models are pre-trained on COCO [11] datasets.

Baselines: We compare ECCO with the following continu-
ous learning frameworks:

e Naive baseline: This baseline retrains a separate model
for each camera (no grouping) and allocates GPU resources

uniformly across all concurrent retraining jobs (without
optimizing GPU usage). Each camera uses a fixed sampling
configuration, and bandwidth is evenly shared among cam-
eras (without optimizing bandwidth efficiency).

e Ekya: Ekya [7] supports both inference and retraining
tasks on edge devices by carefully scheduling GPU re-
sources between these jobs. Unlike Ekya, ECCO allocates
the server’s GPU resources solely for retraining jobs, as
inference is handled on edge devices. For a fair comparison,
we evaluate Ekya in a retraining-only setting. Although
Ekya utilizes more advanced GPU allocation mechanisms
than the naive baseline, it retrains separate models for each
camera (independent retraining) and does not exploit po-
tential similarities in data drift across cameras for grouped
retraining, as ECCO does.

e RECL: RECL [24] selects a historical model from a shared
“model z00” to initialize retraining, aiming to accelerate
convergence by starting from a previously trained model.
While this strategy improves over Ekya, RECL still per-
forms retraining independently for each camera. As the
official implementation is unavailable, we re-implemente
RECL’s GPU allocation algorithm following the descrip-
tions in the paper. To build the model zoo, we fine-tune a
student model on the first two minutes of video from each
camera and store each resulting model separately. RECL
also adopts an adaptive frame uploading mechanism from
AMS [26], which adjusts each camera’s sampling frame
rate based on scene dynamics. However, this adaptation
is driven purely by video content and does not align the
sampling configuration with GPU allocation, nor does it co-
ordinate bandwidth allocation. Since RECL demonstrates
substantial improvement over AMS in its evaluation, we
do not compare ECCO against AMS.

Metrics: We evaluate ECCO and the baselines along two
dimensions: (i) Inference accuracy: We use mean Average
Precision (mAP), a standard metric for both object detection
and instance segmentation tasks [11, 14]. mAP quantifies
both precision and recall across various Intersection over
Union (IoU) thresholds, reflecting the model’s accuracy in
predicting bounding boxes (detection output) and segmenta-
tion masks (segmentation output). (ii) Response time: The
duration required to retrain models to achieve a predefined
accuracy after retraining is triggered.

5 EVALUATION

We evaluate ECCO on two video analytics tasks using three
datasets. Our evaluation focuses on the following aspects:
§5.1 What is the end-to-end performance of ECCO com-
pared to leading baselines?
§5.2 How well does ECCO scale with increasing work-
loads?
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Figure 6: Average accuracy across different GPU resources and shared

bandwidth resources.

§5.3 How does camera similarity impact ECCO’s perfor-
mance advantage over baseline methods?

§5.4 How effective are the three modules of ECCO?

§5.5 How does ECCO improve responsiveness to retraining
requests, especially under low-bandwidth conditions?

Our key findings include:

e With the same compute and communication resources,
ECCO improves mAP by 6.7%-16.6% for object detection
and 9.3%-18.1% for instance segmentation, consistently
outperforming all baselines.

e ECCO can scale to support 3.3X more cameras than base-
lines while maintaining the same accuracy.

e ECCO’s three modules jointly enable dynamic and accurate
camera grouping, improve GPU and bandwidth efficiency,
and enhance retraining quality.

e ECCO reduces response times by more than 5x compared
to baselines under low-bandwidth conditions. These ben-
efits stem from group retraining’s data aggregation and
natural model reuse within a group.

5.1 End-to-End Evaluation

We first evaluate the end-to-end performance of ECCO against
three baselines under varying GPU and bandwidth con-
straints. The experiments use a fixed workload consisting
of all 6 cameras from Scene 03 of the CityFlow dataset. For
the Naive baseline and Ekya, each camera samples frames at
5 FPS with a vertical resolution of 960, reflecting a default
high-rate, high-resolution setting. RECL adjusts only the
frame rate. As none of the baselines consider shared or local
bandwidth constraints, we assume only a shared bandwidth
constraint in this experiment and equal bandwidth sharing
across cameras for all baselines. We consider two experi-
mental conditions: (i) varying the number of GPUs while
fixing total shared bandwidth at 6 Mbps (i.e., corresponding
to 1 Mbps per camera on average, used as a representative
constrained bandwidth setting), and (ii) varying the total
shared bandwidth while fixing the number of GPUs at 4. We
use 4 GPUs due to testbed limits, emulating a small slice of
a larger deployment. We report the average accuracy across
all cameras in Fig. 6.

(b) Instance segmentation

Figure 7: Average retraining accuracy and
response time scaling across multiple cam-
eras.

Overall, ECCO consistently outperforms all baselines. Un-
der the same compute and communication budgets, it im-
proves mAP by 6.7%-16.6% for object detection and 9.3%-
18.1% for instance segmentation over the baselines. For ob-
ject detection, ECCO requires only 1.8 X —2.4x fewer GPUs
to maintain an mAP of 35%, due to its group retraining strat-
egy. By merging retraining across correlated cameras, ECCO
reduces the number of concurrent models, enabling more
GPU resources per model on average. Such efficiency is fur-
ther improved by optimizing GPU resource allocation across
groups. ECCO also achieves the same detection accuracy
(around 40% mAP) while using only 25%-33% of the band-
width required by the baselines. This benefit stems from its
transmission control module, which jointly adjusts sampling
configurations and bandwidth sharing to match GPU alloca-
tion. This design ensures that available bandwidth is used
fully and efficiently.

Among the baselines, RECL performs best due to its model
reuse and GPU allocation strategy. However, as it reduces the
sampling rate based on scene dynamics and does not adapt
to bandwidth availability, it misses the opportunity to benefit
from more training data when more bandwidth is available.
In addition, RECL introduces overhead from continuously
updating a large model zoo and retraining a model selector,
which is not reported here. Finally, there is no guarantee that
a historical model will perfectly match the current data drifts.
In contrast, ECCO directly identifies and leverages current
correlations among retraining requests without incurring
much extra costs.

5.2 Scalability of ECCO

We evaluate the scalability of ECCO by testing it on work-
loads with an increasing number of cameras. Specifically,
we use video streams from up to 22 cameras in Town 3 of
the CARLA simulator, and the detailed scene and camera
placements are visualized in the appendix. The experiment
is conducted on the object detection task using a fixed com-
pute budget of 4 GPUs and a simulated shared bandwidth
of 50 Mbps. Fig. 7 reports the average retraining accuracy
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Right: Retraining accuracy under independent vs. group re-
training across similarity levels.

and response time (using a mAP threshold of 0.4) across all
cameras.

As workload increases, the retraining accuracy of all three
baselines drops significantly, and their response times grow
quickly. This degradation stems from their independent re-
training approach, which causes the compute demand to
grow linearly with the number of cameras. In contrast, ECCO
exhibits a more moderate degradation due to its group re-
training strategy. Compared to the best-performing baseline,
RECL, ECCO supports 3.3X more cameras using the same
resource budget to achieve a similar mAP of 46%. In terms
of responsiveness, under the 22-camera workload, ECCO
reduces the response time to 41.3%-61.1% of the baselines.

5.3 Impact of Camera Similarity

This section provides an intuitive understanding of when
ECCO’s group retraining is beneficial compared to indepen-
dent retraining, and when it is not. We evaluate how the
effectiveness of group retraining depends on the similar-
ity among cameras within a group. To visualize and con-
trol similarity, we simulate six cameras in a region of Town
10 in the CARLA simulator and show their positions and
fields of view in Fig.8. We disable ECCO’s grouping mod-
ule and manually construct three groups of three cameras
each: a high-similarity group (C1-C2-C3), where cameras
capture highly overlapping scenes with similar content; a
medium-similarity group (C1-C4-C5), where cameras are in
nearby locations with partially correlated views; and a low-
similarity group (C1-C5-C6), where cameras observe dis-
tinct and non-overlapping scenes. We simulate a sudden rain
event (weather-induced data drift) and apply group retrain-
ing to each group using a fixed 3-GPU and 3 Mbps shared
bandwidth budget. We compare the results to independent
retraining using Ekya, configured with the same resources.

As shown in Fig.8, group retraining outperforms indepen-
dent retraining when camera similarity is high, improving
mAP by up to 11.9%. However, this advantage diminishes
with decreasing similarity, and in the low-similarity group,
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Figure 9: An example of ECCO’s dynamic camera grouping,.
Lines show the retraining accuracy over time for each camera,
differentiated by marker types. Bars below represent camera
groupings, with identical colors indicating the same group.
ECCO dynamically regroups camera 3 when it no longer
benefit from the current group due to scene divergence.

group retraining provides little improvement due to limited
shared feature across cameras.

5.4 Performance of Modules in ECCO

In this subsection, we evaluate the effectiveness of the three
modules in ECCO, respectively.

54.1

fectiveness of ECCO’s dynamic camera grouping, we collect
driving videos from three vehicles navigating a town map in
CARLA. Mobile cameras introduce a more challenging sce-
nario due to rapid and frequent scene changes, which require
dynamic assessment and regrouping. Fig. 9 shows an exam-
ple of dynamic grouping in ECCO, including each camera’s
grouping status and retraining accuracy over time. We also
present video frames at selected timestamps to qualitatively
verify the grouping behavior.

As the vehicles move sequentially from suburban to urban
areas, their cameras experience similar data drift caused by
background transitions, leading to a drop in model accuracy
to below 15% mAP for all three cameras. ECCO first receives a
retraining request from camera 1 and starts a new retraining
job. Later, it adds cameras 2 and 3 to the same job upon
receiving their requests, as they share similar metadata with
camera 1, and the ongoing training model from camera 1
performs better on their data than their current local models.

As the shared model is retrained, all three cameras benefit
from improved accuracy. However, during retraining win-
dow 6, camera 3 takes a different route and enters a tunnel,
while cameras 1 and 2 continue along the city road. This
causes camera 3’s data distribution to diverge significantly.
When ECCO reassesses the group model’s performance on
camera 3 at the end of the window, it detects a significant
accuracy drop, indicating camera 3 no longer aligns with
the current group. ECCO then removes camera 3 from the
group and treats its case as a new retraining request. Since

Dynamic camera grouping. To evaluate the ef-
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Figure 10: ECCO with RECL’s GPU allocator vs. its native
allocator. The lines above show average accuracy for two
distinct groups (3 cameras vs. 1 camera). The bars below rep-
resent GPU allocation over time. RECL’s allocator focuses
on overall accuracy, neglecting smaller groups, while ECCO
balances overall accuracy and fairness among cameras.

no existing group matches its updated metadata, a separate

retraining job is initiated for camera 3.

5.4.2 GPU allocator. We evaluate the performance of

ECCO’s GPU allocator by replacing it with RECL’s alloca-
tor. The experiment used four drone videos from the MDOT
dataset, featuring three drones operating in an adjacent area
and one drone in a distinct area. This setup ultimately di-
vided the drones into two groups: one with three cameras
and another with a single camera. Fig. 10 illustrates the GPU
resource allocation for both allocators and the average re-
training accuracy over time for each group. As both alloca-
tors share GPU resources on a time-shared basis, we used a
“one-hot bar” to display the GPU allocation results.

When applying the RECL allocator to our system, it al-
located most of the GPU resources to group 1 in the first
two retraining windows. As a result, group 2 experienced
resource starvation, leading to a significant accuracy gap
of up to 23% mAP between the two groups. This is because
the RECL allocator is designed to maximize the total system
accuracy, favoring the group with more cameras due to their
larger impact on overall accuracy improvement. In contrast,
ECCO offers a more balanced approach. It achieves a near-
synchronous accuracy increase among different groups. This
is because ECCO’s allocator not only seeks to improve over-
all accuracy, but it also considers fairness by boosting the
low-performance groups.

5.4.3 Resource-Aware Transmission Controller. We

evaluate our transmission controller through an ablation
study. In the ablated baseline, the controller is disabled at
each camera: all cameras sample frames at a fixed rate of
5 fps and resolution of 960. Bandwidth sharing follows the
traditional AIMD rule (¢ = 1, § = 0.5) across cameras, mean-
ing each camera competes equally for shared bandwidth,
subject to its own local uplink cap. All other system compo-
nents remain unchanged. We use 6 cameras from the CARLA
dataset, evenly grouped into three groups (A, B, C), and fix
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Figure 11: Ablation study of the transmission controller. Left:
Retraining accuracy under varying shared bandwidths, show-
ing that the controller improves accuracy, especially under
limited bandwidth. Right: Per-group bandwidth traces at
9 Mbps shared bandwidth. The controller approximates GPU-
proportional bandwidth allocation, whereas the baseline de-
viates significantly from the ideal allocation target.

the GPU budget to 1 GPU. The total shared bandwidth is
varied from 3 Mbps to 15 Mbps. To emulate heterogeneous
network conditions, we cap the uplink of the two cameras
in Group A to 1 Mbps.

Fig. 11 (Left) shows the average retraining accuracy across
all cameras. As the shared bandwidth increases, the perfor-
mance bottleneck shifts from communication to computa-
tion, leading to an increase in accuracy for both methods
that eventually plateaus. ECCO reaches its peak accuracy
using only one-third of the bandwidth required by the base-
line and achieves up to 4.7% higher accuracy under limited
bandwidth (3 Mbps). Fig. 11 (Right) zooms in on a retraining
window at 9 Mbps shared bandwidth, where GPU allocation
across Groups A, B, and C is approximately in a 3:5:2 ratio. It
compares the per-group bandwidth traces of the two meth-
ods against the ideal GPU-proportional target. ECCO closely
approximates the target allocation, with Groups B and C pro-
portionally sharing the remaining bandwidth after Group A’s
local constraint is saturated. In contrast, the baseline deviates
significantly due to the lack of rate differentiation. These
results demonstrate that aligning communication with com-
pute resources improves retraining accuracy, and that our
transmission controller achieves compute-aware, adaptive
bandwidth sharing under heterogeneous network conditions.

1000 25 50 75
One window (s)

100

5.5 ECCO’s Benefits in Responsiveness

In §5.2, we showed that ECCO improves responsiveness to
data drift through optimized compute and communication re-
source usage. Beyond resource efficiency, here we highlight
two additional factors that contribute to its responsiveness:
natural model reuse and data aggregation within a group. To
isolate and evaluate these effects, we conduct intra-group
experiments using Group 1 in Fig.10, which includes three
drone video streams. We compare ECCO with two methods:
(i) RECL, which selects a historical model as the retraining
starting point; (i) ECCO +RECL, which combines group re-
training with historical model reuse.
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Natural model reuse. Fig. 12 shows each camera’s retrain-
ing accuracy over time. For cameras 2 and 3, ECCO and ECCO
+RECL achieve up to 15% higher initial mAP than RECL. This
is because group retraining allows later retraining requests
to start from a model that has already been partially updated
using data from earlier cameras in the same group. In con-
trast, RECL relies on static historical models, which may not
perfectly match the current, drifted data distribution. For
camera 1, RECL achieves higher initial accuracy because it
reuses an appropriate historical model, whereas ECCO starts
retraining from scratch. ECCO +RECL inherits the strengths
of both approaches and consistently yields the highest initial
accuracy across all cameras.

Data aggregation. Group retraining improves responsive-
ness under poor network conditions, which are common in
mobile scenarios such as drones or vehicles. Fig. 13 shows
the average time required to reach 35% mAP under various
low-bandwidth constraints on each camera’s local uplink.
RECL and Ekya exhibit up to 5x longer response times com-
pared to group retraining methods. This is because individual
retraining must wait for sufficient data from a single cam-
era, whereas group retraining aggregates data streams from
multiple cameras, effectively increasing the available train-
ing data and speeding up training. Incorporating RECL into
ECCO further reduces response time by initializing retrain-
ing from a stronger starting point.

6 RELATED WORK

Live video continuous learning: Prior studies have fo-
cused on building video analytics systems to provide high
accuracy, low cost, and fast responses. These systems employ
techniques such as model merging [38], model architecture
pruning [52, 54], model distillation [23, 27], configuration
adaptation [22, 29, 51, 57], and frame selection [9, 31]. How-
ever, all these efforts have aimed to optimize only the infer-
ence accuracy or the compute/network costs of DNN infer-
ence. In contrast, our work focuses on serving continuous
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learning for live video analytics, a relatively unexplored fo-
cus area until recently. One pioneering effort in this domain
is Ekya [7], which introduces a scheduler that optimally allo-
cates GPU resources between retraining and inference tasks
on edge servers. Building on this, RECL [24] further inte-
grates model reuse with continuous retraining to enhance
resource efficiency and responsiveness to data drift in live
videos. The most recent study, Adalnf [45], manages GPU
resource allocation to ensure service level objectives (SLOs)
are guaranteed across multiple retraining models.

However, these systems share a common limitation: they
handle retraining requests from different cameras indepen-
dently, neglecting the similarity and potential for synergy be-
tween them, which can result in redundant retraining costs.
ECCO addresses this issue by recognizing and exploiting
the potential correlations between different camera feeds. By
merging similar retraining requests, we improve the resource
efficiency of the system.

Leveraging cross-camera correlations: Cross-camera cor-
relations have been well recognized and utilized in previ-
ous work. In the computer vision community, these cor-
relations are extensively studied in two main tasks: per-
son re-identification (re-id) and multi-target, multi-camera
(MTMC) tracking. Many studies have proposed new neural
network architectures that use multi-camera correlations to
address these tasks [41, 50, 53, 59]. In the systems literature,
Chameleon [22] and Spatula [19] are two notable examples.
Chameleon uses the temporal and spatial correlations among
different videos to reduce the cost of neural network con-
figuration profiling. Similarly, Spatula exploits cross-camera
correlations to lower the inference costs in applications such
as re-id and MTMC tracking.

ECCO stands apart from these approaches, as it aims to re-
duce the continuous learning costs of video analytics systems
through cross-camera correlations. Guided by this objective,
we present a new concept—group retraining. We have also
developed an end-to-end framework that optimizes the use
of compute and communication resources.

7 CONCLUSION

In this paper, we introduced ECCO, a novel video analytics
framework that significantly enhances the efficiency of con-
tinuous learning by leveraging cross-camera correlations.
ECCO smartly groups cameras experiencing similar data
drifts to retrain a shared model, thereby reducing redun-
dancy and optimizing resource utilization in terms of both
computing power and data transmission. Extensive evalua-
tions on multiple datasets demonstrated that ECCO markedly
outperforms existing systems in accuracy, efficiency, and
scalability.
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A APPENDIX

Here we provide more details on the dataset generation using
the CARLA simulator. We set up fixed traffic cameras at
various locations in Town 3 within the CARLA ecosystem.
These cameras are used for assessing the scalability of ECCO
(Section 5.2). The locations and orientations of these traffic
cameras are illustrated in the figure below.

Figure 14: Overview of camera placement in Town 3, CARLA
simulator. Red markers with black arrows indicate the loca-
tion and direction of traffic cameras.
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