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ABSTRACT
Recent advances in video analytics address real-time data

drift by continuously retraining specialized, lightweight DNN

models for individual cameras. However, the current prac-

tice of retraining a separate model for each camera suffers

from high compute and communication costs, making it

unscalable. We present ECCO, a new video analytics frame-

work designed for resource-efficient continuous learning. The
key insight is that the data drift, which necessitates model

retraining, often shows temporal and spatial correlations

across nearby cameras. By identifying cameras that experi-

ence similar drift and retraining a shared model for them,

ECCO can substantially reduce the associated compute and

communication costs. Specifically, ECCO introduces: (i) a

lightweight grouping algorithm that dynamically forms and

updates camera groups; (ii) a GPU allocator that dynamically

assigns GPU resources across different groups to improve re-

training accuracy and ensure fairness; and (iii) a transmission

controller at each camera that configures frame sampling and

coordinates bandwidth sharing with other cameras based on

its assigned GPU resources. We conducted extensive eval-

uations on three distinctive datasets for two vision tasks.

Compared to leading baselines, ECCO improves retraining

accuracy by 6.7%-18.1% using the same compute and com-

munication resources, or supports 3.3× more concurrent

cameras at the same accuracy.

1 INTRODUCTION
The rapid expansion of camera deployments [1, 12, 18] is

driving a growing demand for live video analytics, with the

market expected to reach 22.6 billion USD by 2028 [34]. Live

video analytics uses deep neural network (DNN) models

to perform vision tasks such as object detection and classi-

fication. These analytics are at the core of applications in

diverse fields like enterprise security [30], traffic monitoring

[44], and autonomous driving [58]. To process live video

streams in real time and ensure low-latency results, it is of-

ten crucial to deploy DNNs and run inference directly on

edge devices [5, 20]. However, since edge devices often have

limited resources (with less powerful GPUs [2, 3]), these de-

vices typically use lightweight, specialized models instead

of complex, generic models [17, 36].

These lightweight models are initially trained using rep-

resentative data from each camera. Once deployed, these

models face challenges from data drift, where the live video
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Figure 1: Frameworks of existing continuous retraining
systems (left) and our proposed system (right).

data changes significantly from the initial training data. For

example, cameras deployed in urban areas or mounted on

moving vehicles may record changes in object types, activi-

ties, lighting conditions, or crowd densities over time. As a

result, the accuracy of the DNN’s predictions can substan-

tially decline. A promising solution to tackle data drift is

continuous learning. This approach retrains the lightweight

models on an edge server using more recent video frames

transmitted from the cameras, helping the models to adapt

to new data patterns. Recent studies [25, 37] have shown the

benefits of continuous learning in enhancing the robustness

and accuracy of video analytics systems.

A key challenge in continuous learning is resource effi-

ciency, as practical deployments are often constrained by

compute and communication resources. Two critical resources

in this setting are the GPUs at the edge server and the band-

width between the distributed cameras and the server. Prior

works have only focused on improving GPU efficiency (i.e.,

model accuracy per GPU unit). For example, Ekya [7] and

AdaInf [45] optimize GPU scheduling across retraining (and

inference) tasks from multiple cameras. RECL [24] enhances

GPU efficiency by reusing historical models as starting points

for retraining. However, these methods have two significant

limitations. First, they largely overlook bandwidth efficiency,

which is related to GPU usage and should be optimized

jointly. Second, all these systems assume training a separate

model for each camera, a strategy we refer to as “independent
retraining” (see Fig. 1 (left)). This design can result in redun-

dant GPU computation, especially when cameras exhibit

correlated data patterns.

Core idea:We introduce group retraining, a new approach

that groups cameras experiencing similar data drift and re-

trains a shared model using their collective data (see Fig. 1

(right)). The rationale for group retraining is two-fold. First,

data drift often exhibits temporal and spatial correlation
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among some cameras, e.g., traffic cameras at the same inter-

section or cameras mounted on vehicles traveling together

may encounter similar environmental changes. Second, light-

weight models, despite their compact architecture, can gen-

eralize across similar data distributions and may even benefit

from subtle variations observed by different cameras [28, 32].

By retraining one model for a group of cameras instead of

individual models for each, we reduce the number of models

that need retraining. This reduces compute costs and lowers

the data transmission requirements for each camera to the

edge server.

Technical challenges: Realizing the potential of group re-

training involves addressing several system-level challenges.

First, efficiently identify cameras with similar data drift is

challenging because video streams are high-dimensional,

making direct cross-camera comparisons computationally

expensive. Moreover, as live video content changes continu-

ously, camera grouping cannot be a one-time operation and

must be updated over time. Second, allocating GPU resources

efficiently across camera groups is non-trivial. As we will

show in §3.1, naive extensions of existing GPU allocation

algorithms are ill-suited for group retraining. They tend to

favor larger groups while under-provisioning smaller ones,

resulting in unfairness among cameras. Third, in addition

to GPU resources, network bandwidth is a critical yet often

overlooked constraint. Since different groups’ models are

retrained using live data transmitted from their distributed

cameras, bandwidth allocation across groups must be coordi-

nated with GPU allocation to maximize retraining efficiency.

This coordination is challenging because it often requires as-

signing unequal bandwidth shares to different groups, which

may conflict with the equal-share behavior enforced by stan-

dard congestion control mechanisms.

Our solution: We introduce ECCO, a new continuous re-

training framework for live video analytics that leverages

cross-camera correlations to improve resource efficiency,

scalability, and responsiveness. ECCO addresses the above

challenges through three key strategies: (i) A lightweight

grouping algorithm that first narrows down candidate cam-

eras using metadata (e.g., drift time and location), and then

makes grouping decisions by evaluating the accuracy gain.

(ii) A new formulation of the GPU allocation problem tai-

lored for group retraining, along with a GPU allocator that

jointly optimizes for overall performance and fairness across

groups. (iii) A transmission controller at each camera that

adapts frame sampling (data volume) to match its assigned

GPU resource and adjusts its transmission rate using a cus-

tomized congestion control algorithm, that enables band-

width allocation across groups in proportion to their GPU

shares in a best-effort manner.

We implemented and evaluated ECCO on two computer

vision tasks: object detection and instance segmentation, and

compared it with state-of-the-art video analytics systems for

three datasets. Using the same compute and communica-

tion resources, ECCO improves the mean Average Precision

(mAP) by 6.7%-16.6% for object detection and 9.3%-18.1% for

instance segmentation over strong baselines. While this im-

provement may appear to be a small change in accuracy, in

practice this improvement translates to supporting 3.3×more

cameras at the same accuracy level. We also show that ECCO
’s GPU allocator optimizes both performance and fairness,

which significantly reduces the accuracy gap across groups

while maintains comparable overall accuracy to the baseline

allocator. The transmission controller improves bandwidth

efficiency, requiring only 25%-33% of the bandwidth used

by baselines to reach similar accuracy with the same GPU

budget. Another finding is that ECCO’s advantage in respon-

siveness becomes more pronounced under low-bandwidth

conditions, reducing retraining latency by more than 5× due

to group retraining’s effective data aggregation and natural

model reuse within the group.

2 MOTIVATION AND OBSERVATIONS
2.1 Limitations of Independent Retraining
To highlight the inefficiencies of current retraining approaches,

we first revisit the standard retraining pipeline shown in

Fig. 1 (left). Edge devices perform real-time inference on live

video using local lightweight models (“students”). When data

drift is detected
1
, the edge device sends a retraining request

to the edge server and begins continuously sampling and

transmitting video frames as retraining data. The server uses

a high-accuracy but resource-intensive model (“teacher”) to

annotate these frames, retrains a separate student model for

each camera using its own data, and returns the updated

model to the corresponding device.

This design faces an obvious scalability challenge: as the

number of cameras increases, the retraining workload grows

linearly, placing significant strain on both GPU and band-

width resources, which increases retraining latency. More-

over, when multiple cameras experience similar data drift,

independently retraining separate models becomes redun-

dant and inefficient.

2.2 Why Group Retraining?
Cross-camera correlations in data drift. Themain insight

motivating our work is that data drift among cameras can

exhibit spatial and temporal correlations. Cameras that are

geographically close often experience similar environmental

changes at similar times. Fig. 2(a) and (b) illustrate examples

1
Several prior works [4, 21, 40] have been proposed to detect data drift or

scene changes in video streams and can serve as retraining triggers.
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Figure 2: A motivation study. (a) & (b): Example frames from two public datasets showing that data drift exhibits
significant temporal and spatial correlations among cameras. (c) Model accuracy of three retraining settings.

of such drift using two representative camera types: static

cameras from the WILDTRACK [8] dataset and mobile cam-

eras from the MDOT [35] dataset. In WILDTRACK, static

cameras monitoring a plaza show similar changes in fore-

ground content (e.g., pedestrian density and behavior). In

MDOT, mobile cameras mounted on drones flying in forma-

tion capture similar shifts in both foreground (e.g., vehicle

densities) and background (e.g., buildings and vegetation)

as they move through urban and suburban areas. This phe-

nomenon is also observed in other public datasets such as

Cityflow [47], Bellevue Traffic Video [10], VERI-Wild [33],

and DukeMTMC [43]. These examples suggest that indepen-

dent retraining can be inefficient when data distributions

across cameras are closely aligned.

We propose a new approach, group retraining, which ag-

gregates retraining requests from cameras with correlated

data drift and uses their collective data to retrain a single

shared model. While prior work has used inter-camera cor-

relations for tasks such as object re-identification [19] or

video inference configuration [22], our approach is, to our

knowledge, the first to exploit these correlations to reduce

the cost of model retraining.

Benefits of group retraining. To demonstrate the poten-

tial benefits of group retraining, we conduct a case study

using three drone videos selected from the MDOT dataset,

identified as correlated based on manual inspection. These

videos exhibit similar scene changes as the drones fly in for-

mation, resembling the scenario illustrated in Fig. 2(b). We

use a high-performance object detection model, YOLO11x

(194.9 BFLOPs), as the teacher and a lightweight version,

YOLO11n (6.5 BFLOPs), as the student model. We compare

three retraining settings: (i) Independent retraining: Each

camera retrains its own model using 1 GPU (3 GPUs in to-

tal). (ii) Group retraining (3 GPU): A shared model is trained

using data from all three cameras with 3 GPUs. (iii) Group

retraining (1 GPU): The shared model is retrained using the

same data with only 1 GPU.

Fig. 2(c) reports object detection accuracy over time, mea-

sured by mean Average Precision (mAP) averaged across

the three cameras. We observe that: (i) With the same GPU

resources, group retraining (green) achieves higher accuracy

and lower retraining latency than independent retraining

(red). (ii) Even with only 1 GPU, group retraining performs

comparably to independent retraining using 3 GPUs. These

results suggest that group retraining can significantly reduce

retraining cost in GPU use, while improving responsiveness.

3 DESIGN OF ECCO
This paper proposes ECCO, a continuous learning system

for live video analytics that improves compute and commu-

nication efficiency by leveraging cross-camera correlations

through group retraining.

Overall architecture (Fig.3 and Fig.4): ECCO comprises

a server, multiple edge devices (cameras), and the network

connecting them. We make no assumptions about the under-

lying network connectivity.

Fig.3 illustrates steady-state operations, where cameras

have already been grouped based on data drift similarity.

Each group’s retraining is handled by a single job. Retraining

is managed in discrete retraining windows, which serve as

the basic unit for coordination and resource management.

Within each retraining window, ECCO improves resource

efficiency and retraining accuracy through two coordinated

modules.

The GPU allocator at the server dynamically distributes

GPU resources across groups, guided by an objective that

balances overall retraining performance with fairness among

groups (§3.1). The GPU allocation information is transmitted

to cameras to guide their transmission strategies.

To maximize retraining accuracy, the transmission con-

troller at each camera configures training data and regu-

lates transmission to match the allocated GPU budget. First,

it selects a sampling configuration (frame rate and resolu-

tion) based on both the GPU budget and the observed scene

characteristics (§3.2.1). Second, it aligns its bandwidth us-

age with the assigned GPU share. This is achieved using

a customized GAIMD congestion control algorithm [55],
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Figure 3: Steady state of ECCO. The server-side GPU
allocator and camera-side transmission controllers co-
ordinate to support group retraining. Colors indicate
different groups.

which enforces flows to compete with controlled aggressive-

ness proportional to their GPU share, thereby approximating

GPU-proportional bandwidth allocation under network con-

straints (§3.2.2). While non-AIMD approaches are possible,

they are not the focus of our efforts.

Fig.4 illustrates how camera groups are created and up-

dated in response to data drift. Camera grouping involves

two stages. The first is initial grouping, triggered when a

camera detects drift and initiates a retraining request. At

this point, the server determines whether the camera should

join an existing group that targets similar data drift or form

a new group. The second is regrouping, performed period-

ically on existing groups during retraining. This process

adapts group membership to evolving data distributions in

live video streams, as some cameras may gradually drift and

no longer remain similar to others in their current group.

3.1 GPU Allocation for Group Retraining
To scale and serve more cameras, ECCO must efficiently

allocate GPU resources across camera groups. Unlike exist-

ing allocation methods designed for independent retraining

[7, 24, 45], group retraining introduces new challenges that

those methods do not address. We thus formulate a new opti-

mization objective that balances overall retraining accuracy

with fairness across groups. To achieve this, we design a

GPU allocation algorithm that tracks each group’s current

accuracy and its accuracy improvement with added compute

resources. It then dynamically allocates more GPU resources

to groups that either have low accuracy or show larger im-

provement when given more GPU resources.

Limitations of existing approaches: Prior work typically

allocates GPU resources to maximize total accuracy improve-

ment (or average accuracy) across all cameras over a re-

training window. However, directly applying this strategy to

group retraining introduces bias: it implicitly favors larger
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(if needed)
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Updated Groups

Current 
Groups

Yes
Retraining Request
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Figure 4: Dynamic camera grouping in ECCO. Initial
grouping is triggered by retraining requests, while pe-
riodic regrouping updates groups during retraining.

groups, since improvements from a groupwithmore cameras

contribute more to the global accuracy sum.

To illustrate this issue, consider two groups: G1 with four

cameras and G2 with one. If given equal GPU time, G1’s

model accuracy improves by 10%, and G2’s by 15%. Since

G1’s improvement benefits four cameras, its total contribu-

tion is 4 × 10% = 40%, while G2’s is only 15%. Thus, existing

algorithms [7, 24] tend to allocate most GPU resources to G1,

leading to prolonged starvation for G2—until the training

efficiency of G1 (i.e., accuracy gain per GPU second) natu-

rally declines as training converges. The root cause is that

existing objectives implicitly weight groups by size, which

is suitable for independent retraining but introduces a sys-

tematic allocation bias against smaller groups in the group

retraining setting.

Objective reformulation: To address this, we define a new
objective that balances system-wide accuracy and fairness

across groups. Consider a set of retraining jobs J , one per

group, running on 𝐺 GPUs over a retraining window 𝑇 of

duration ∥𝑇 ∥, with total compute capacity 𝐺 ∥𝑇 ∥ GPU-time.

Let𝐴 𝑗 (𝑔 𝑗 ) be the accuracy of group 𝑗 ’s model after receiving

𝑔 𝑗 GPU-time, averaged over its 𝑛 𝑗 camera members. We

optimize:

max

{𝑔𝑗 } 𝑗 ∈J

𝛼
∑

𝑗∈J 𝑛
𝛽

𝑗
𝐴 𝑗 (𝑔 𝑗 )∑

𝑗∈J 𝑛
𝛽

𝑗

+min

𝑗∈J
𝐴 𝑗 (𝑔 𝑗 )

 s.t.

∑︁
𝑗∈J

𝑔 𝑗 ≤ 𝐺 ∥𝑇 ∥

(1)

The first term captures the overall average accuracy across all

groups, weighted by 𝑛
𝛽

𝑗
, where 𝛽 ≤ 1 controls the influence

of group size, i.e., how much distinction is made between

groups of different sizes. The second term promotes fairness

by maximizing the worst-performing group’s accuracy. The

parameter 𝛼 adjusts the balance between the two goals.

GPU allocation algorithm: We build on the resource allo-

cation algorithm in [24] and propose a modified version tai-

lored to our optimization objective. We time-share the GPU

across multiple retraining jobs by dividing a retraining win-

dow 𝑇 into𝑊 micro-windows. During each micro-window,

one retraining job exclusively uses all GPUs. The key idea
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Algorithm 1 GPU Allocation for Group Retraining

1: Input: retraining jobs J , retraining window size of𝑊

micro-windows, constants 𝛼, 𝛽

2: budget←𝑊 , initialize 𝐴𝑐𝑐 [], 𝐴𝑐𝑐𝐺𝑎𝑖𝑛[],𝑂𝑏 𝑗𝐺𝑎𝑖𝑛[]
3: procedureMicroRetraining(j)

4: acc𝑖 ← 𝑗 .EVAL()
5: Train job 𝑗 for one micro-window

6: acc𝑓 ← 𝑗 .EVAL()
7: budget← budget − 1
8: 𝐴𝑐𝑐 [ 𝑗] ← 𝑎𝑐𝑐 𝑓 ; 𝐴𝑐𝑐𝐺𝑎𝑖𝑛[ 𝑗] ← 𝑎𝑐𝑐 𝑓 − 𝑎𝑐𝑐𝑖
9: procedure CalObjectiveGain
10: for 𝑗 in J do

11: 𝑂𝑏 𝑗𝐺𝑎𝑖𝑛[ 𝑗] ← 𝛼𝑛
𝛽

𝑗∑
𝑗 ∈J 𝑛

𝛽

𝑗

𝐴𝑐𝑐𝐺𝑎𝑖𝑛[ 𝑗]

12: 𝑂𝑏 𝑗𝐺𝑎𝑖𝑛[argmin(𝐴𝑐𝑐)]+ = 𝐴𝑐𝑐𝐺𝑎𝑖𝑛[argmin(𝐴𝑐𝑐)]
13: for 𝑗 in J do ⊲ Initial training pass
14: MicroRetraining( 𝑗 ); 𝐶𝑎𝑙𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐺𝑎𝑖𝑛()
15: Estimate per-group GPU resource (§3.2)

16: while budget > 0 do
17: 𝑗 ← argmax(𝑂𝑏 𝑗𝐺𝑎𝑖𝑛)
18: MicroRetraining( 𝑗 ); 𝐶𝑎𝑙𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐺𝑎𝑖𝑛()

is to greedily assign GPU time to the group that yields the

highest marginal improvement in the objective Eq. 1.

Algorithm 1 outlines the procedure. It starts with an initial

training pass (Lines 13–14), where each job trains for one

micro-window to establish its short-term accuracy trajectory.

After this, we measure each job’s “accuracy gain”, defined

as the improvement in accuracy before and after training

(Lines 3–8). This is then converted into a job-specific “objec-

tive gain” (Lines 9–12), which estimates its contribution to

the overall objective (Eq.1). For most jobs, the objective gain

corresponds to the first term of Eq.1,

𝛼𝑛
𝛽

𝑗∑
𝑗 ∈J 𝑛

𝛽

𝑗

𝐴𝑐𝑐𝐺𝑎𝑖𝑛, cap-

turing their marginal contribution to the weighted average

accuracy. For the lowest-accuracy job, we also include the

second term of Eq. 1, giving ( 𝛼𝑛
𝛽

𝑗∑
𝑗 ∈J 𝑛

𝛽

𝑗

+1)𝐴𝑐𝑐𝐺𝑎𝑖𝑛, where the
additional 𝐴𝑐𝑐𝐺𝑎𝑖𝑛 serves as a fairness bonus to promote

balance and prevent starvation. After this initialization, the

algorithm repeatedly selects the job with the highest objec-

tive gain and assigns it the next micro-window (Lines 16–18).

Objective gains are updated after each micro-window to re-

flect the latest performance trends. This greedy allocation

continues until the GPU time budget is exhausted, approxi-

mating maximization of Eq. 1 under the GPU constraint.

GPU allocation estimation for transmission control:
While the actual GPU allocation is performed dynamically

as detailed above, the transmission controller at each camera

(§3.2) requires an upfront estimate of its group’s expected

compute budget to guide transmission. To provide this signal,

the server uses the objective gains from the initial training

pass to estimate each group’s GPU share for the current

window (Line 15). Specifically, the estimated GPU resource

𝑐 𝑗 for group 𝑗 is proportional to its objective gain relative

to all groups: 𝑐 𝑗 =
ObjGain[ 𝑗 ]∑

𝑖∈J ObjGain[𝑖 ]𝐺 ∥𝑇 ∥. We also define 𝑝 𝑗 =

ObjGain[ 𝑗 ]∑
𝑖∈J ObjGain[𝑖 ] as the normalized GPU share weight for group

𝑗 . The pair (𝑐 𝑗 , 𝑝 𝑗 ) is then communicated to the group’s

cameras as GPU allocation information.

3.2 Resource-Aware Transmission Control
At the camera side, video transmission is governed by two ex-

ternal resources: GPU allocation and bandwidth availability.

GPU allocation is decided by the server, which determines

both (i) the group’s capacity to consume data and (ii) its

relative priority for receiving more data. In practice, this

capacity can be expressed as the maximum number of pixels

per second that the GPU can process. Bandwidth availability,

in contrast, is not explicitly allocated; it is constrained by

network conditions and realized through congestion control.

Given these constraints, the camera controls three param-

eters of transmission: frame rate, resolution, and compres-

sion level. We refer to frame rate and resolution together as

the sampling configuration. Whenever the server provides

updated GPU allocation information, the camera selects a

sampling configuration whose frame rate–resolution prod-

uct (pixels per second) stays within the GPU budget; multi-

ple valid choices exist, and we discuss selection strategies

in §3.2.1. During streaming, the camera then adjusts the

compression level continuously to ensure the selected con-

figuration can be delivered within the bandwidth actually

achieved on the network. To approximate GPU-proportional

weighted bandwidth allocation while respecting network

constraints, we employ a customized GAIMD congestion

control algorithm.

3.2.1 Adaptation of Sampling Configuration. The sam-

pling configuration impacts retraining quality because a lim-

ited GPU budget caps training throughput (e.g., total number

of pixels processed per second [46]). As a result, increasing

frame rate often requires lowering resolution, and vice versa.

Retraining performance is therefore tightly coupled with

how this tradeoff is managed under GPU constraints.

To study this tradeoff, we conduct a case study using two

representative camera types: a static, high-mounted traffic

camera (A) and a mobile, vehicle-mounted camera (B), both

simulated in the CARLA [13] autonomous driving simulator

(see Fig. 5). Using the model setup in §2.2, we retrain a model

for each camera using various sampling configurations while

keeping the GPU budget fixed. To ensure a fair comparison,

we fix the transmission bitrate to 1𝑀𝑏𝑝𝑠 across all settings.

This isolates the impact of sampling choices under consistent
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(a) Camera A (b) Camera B

Camera A

Camera B
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Figure 5: Impact of sampling configurations (frame
rate and resolution) on retraining accuracy under a
fixed GPU budget for two distinct camera types.

GPU and bandwidth conditions. Fig. 5 shows the resulting

retraining accuracy across configurations.

Two observations emerge. First, with the same GPU bud-

get, retraining accuracy varies significantly across sampling

configurations—by up to 2×. Second, the optimal configura-

tion (circled in the figure) varies across camera types. This

variation stems from intrinsic differences in camera charac-

teristics, such as placement and mobility. The static camera

benefits more from higher resolution to capture small, distant

objects, while the mobile camera benefits more from higher

frame rates to adapt to rapid scene changes. These results

highlight the importance of camera-specific configuration

based on GPU budgets.

We leverage this observation to guide the design of our

sampling configuration selection method. First, each camera

conducts offline profiling to evaluate the accuracy of different

frame rate and resolution combinations (𝑓 , 𝑞) across different
GPU budget levels. Given that retraining occurs within fixed-

length retraining windows, which are further discretized into

microwindows, the number of distinct GPU resource levels is

limited. This results in a lookup table that maps GPU budgets

to their corresponding optimal sampling configuration.

At runtime, upon receiving its group’s GPU allocation 𝑐 𝑗 ,

each camera queries its table to select the optimal sampling

configuration (𝑓 ★, 𝑞★). To balance data contributions across

the𝑛 𝑗 group members, it scales the frame rate to 𝑓 ★/𝑛 𝑗 while

keeping 𝑞★ unchanged. This ensures that the total volume

of sampled frames aligns with the group’s compute capacity.

3.2.2 AdaptiveWeighted Bandwidth Allocation. After sam-

pling, each camera encodes frames based on available band-

width and transmits them to the server. Since they all send to

the same destination, cameras naturally share one or more

network links, leading to contention and bandwidth bottle-

necks. A naïve equal-allocation strategy can result in ineffi-

cient bandwidth usage, especially considering GPU resources

can be allocated unevenly across cameras. We argue that

“utility-based” bandwidth allocation, where each camera’s

Table 1: Retraining accuracy under equal vs. GPU-
proportional bandwidth allocation.

BW allocation

schemes

Camera A

mAP (%)

Camera B

mAP (%)

Overall

mAP (%)

Equal (1.5 Mbps each) 34.7 26.1 30.4

Proportional (0.9/2.1) 33.4 30.8 32.1

bandwidth share is proportional to its GPU allocation, bet-

ter aligns data delivery with compute capacity and leads to

improved retraining quality.

To illustrate this, we conduct a simple case study using

cameras A and B in Fig. 5. Camera A starts retraining with a

model accuracy of 28% mAP, and camera B with 16%. To help

B catch up and improve overall performance, we allocate 30%

of the GPU to A and 70% to B. Each camera uses its optimal

sampling configuration under the assigned GPU budget. We

fix the total uplink bandwidth to 3𝑀𝑏𝑝𝑠 and compare two

bandwidth allocation strategies: equal allocation vs. GPU-

proportional allocation (i.e., 0.9𝑀𝑏𝑝𝑠 for A and 2.1𝑀𝑏𝑝𝑠 for

B).

Table 1 shows that equal bandwidth allocation leads to

lower retraining accuracy for the high-GPU camera B, likely

due to delayed, dropped, or degraded frames. This results in

under-utilization of compute resources and reduced overall

retraining accuracy. In contrast, proportional allocation al-

lows each camera to deliver training frames in time to match

its GPU share, thus improving retraining accuracy.

Achieving such GPU-proportional weighted bandwidth

allocation is however challenging because of the distributed

and heterogeneous nature of the network. Cameras connect

to the server through diverse paths with varying conditions,

and two types of constraints can occur together: (i) multiple

cameras may share an uplink bottleneck with unknown ca-

pacity; and (ii) individual cameras, especially mobile ones,

may also be constrained by their own weak local links.

To address this, we design a distributed rate control mech-

anism based on the GAIMD (Generalized Additive Increase

Multiplicative Decrease) congestion control algorithm [55].

The core idea is to scale each camera’s aggressiveness in

bandwidth competition according to its GPU share. By cus-

tomizing the GAIMD parameters, each camera converges to a

steady-state sending rate that approximates GPU-proportional

bandwidth sharing.

Specifically, each camera tunes its GAIMD parameters, the

additive increase factor 𝛼 and multiplicative decrease factor

𝛽 , to control its transmission rate. This design leverages a

known result: the steady-state throughput of a GAIMD flow

is roughly proportional to 𝛼/(1 − 𝛽) [56]. Based on this,

upon receiving the GPU share weight 𝑝 𝑗 from the server,

each camera fixes 𝛽 = 0.5 and sets 𝛼 = 𝑝 𝑗/𝑛 𝑗 , where 𝑛 𝑗 is

the number of cameras in its group 𝑗 . The resulting GAIMD

rate serves as the target sending rate for the video stream.
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Algorithm 2 Dynamic Camera Grouping Algorithm

1: Input: retraining jobs J , new retraining request 𝑟

2: procedure GroupReqest(J , 𝑟 )

3: for 𝑗 in J do
4: if ∀ 𝑟 in 𝑗 , |𝑟 .𝑡 − 𝑟 .𝑡 | ≤ 𝜀 and |𝑟 .𝑙𝑜𝑐 − 𝑟 .𝑙𝑜𝑐 | ≤ 𝛿

then ⊲ Correlation filtering
5: 𝑎𝑐𝑐 𝑗 ← 𝑗 .EVAL(𝑟 .𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
6: if 𝑎𝑐𝑐 𝑗 ≥ 𝑟 .𝑎𝑐𝑐 then ⊲ Performance check
7: 𝐽𝑜𝑏𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 [ 𝑗] ← 𝑎𝑐𝑐 𝑗

8: if 𝐽𝑜𝑏𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ≠ ∅ then
9: 𝑗 ← argmax(𝐽𝑜𝑏𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒); 𝑗 ← 𝑗 ∪ {𝑟 }
10: else
11: 𝑗 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑁𝑒𝑤 𝐽𝑜𝑏 (𝑟 ); J ← J ∪ { 𝑗}
12: procedure UpdateGrouping(J )

13: while each retraining window 𝑛 ends do
14: for 𝑗 in J do
15: for 𝑟 in 𝑗 do
16: 𝑟 .𝑎𝑐𝑐𝑛 ← 𝑗 .EVAL(𝑟 .𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
17: if 𝑟 .𝑎𝑐𝑐𝑛−𝑟 .𝑎𝑐𝑐𝑛−1

𝑟 .𝑎𝑐𝑐𝑛−1
< −𝑝 (𝑝 > 0) then

18: 𝑗 .𝑅𝑒𝑚𝑜𝑣𝑒 (𝑟 ); 𝑟 .𝑈𝑝𝑑𝑎𝑡𝑒 (𝑡, 𝑙𝑜𝑐);
19: GroupRequest(J , 𝑟 )

The video encoder tracks this target and adjusts compression

(quantization) in real time to stay close to it, while keeping

the selected frame rate and resolution fixed.

A key advantage of this approach is that it requires neither

explicit coordination between cameras nor knowledge of the

network topology. It automatically adapts to both shared

bottlenecks and individual camera constraints. While some

cameras may fall short of their target bandwidth due to

local network conditions, the system still approximates GPU-

proportional bandwidth allocation in a best-effort manner.

3.3 Dynamic Camera Grouping
While the previous two subsections focus on steady-state

operations for group retraining, ECCO must also handle the

creation and update of camera groups to make retraining

effective. This includes initial grouping to accommodate new

retraining requests and periodic checks to determinewhether

existing groups remain valid or require regrouping. To keep

the process lightweight, ECCO exploits metadata for fast pre-

filtering, which narrows down candidate groups and avoids

unnecessary computation. Final grouping and regrouping de-

cisions are then based on actual accuracy improvements that

directly reflect the goal of retraining. Algorithm 2 outlines

this process.

Grouping initialization for new retraining requests: At
runtime, each camera detects data drift locally and issues a

retraining request when drift is observed. Several existing

techniques [4, 21, 40] can be used for drift detection. The

request includes metadata (request time and location), sam-

pled frames, and a copy of the device’s lightweight model.

Upon receiving the request, ECCO checks whether any on-

going retraining jobs (groups) show temporal and spatial

correlations with the new request. It compares the new re-

quest’s metadata against those in ongoing jobs to determine

if they fall within a predefined time window and geographi-

cal range (Line 4). The rationale is that cameras operating

close in space often experience similar data drifts at similar

times. If no correlated group is found, ECCO initiates a new

retraining job for the request, starting with the device’s sent

model and sampled frames (Line 11).

If correlated groups are found, ECCO evaluates these jobs’

model performance using a small subset of the sample frames

from the new request (Line 5). Themodel that shows themost

significant improvement on the new request is selected, and

the new request is then integrated into the corresponding

job; this involves adding its metadata to the job’s metadata

and aggregating its sample frames into the job’s training data

(Line 9). This performance check ensures that the grouping

decision is grounded in actual model accuracy rather than

relying solely on metadata similarity, thereby preventing

incorrect group assignments that could harm retraining ac-

curacy. Since this grouping process is efficient, the delay

it introduces is negligible compared to the duration of a

retraining window.

Periodic reevaluation of existing groups: Since video
content evolves over time, retraining groups must be up-

dated dynamically. For example, mobile cameras in a fleet

may initially share similar scenes and be grouped together,

but changes in routes can cause their data distributions to

diverge. To account for such dynamics, ECCO periodically re-

assesses existing groups at the end of each retrainingwindow.

It iteratively evaluates the performance of every groupmodel

on each camera member and compares it to the performance

in the previous window (Line 16-17). If a camera’s accuracy

drops beyond a threshold, it signals that the camera has un-

dergone a second drift during the window and no longer

aligns with the group’s data distribution. The camera is then

removed from the group. There can be situations where only

some cameras are removed from a group, and others where

all are removed due to group-wide new drift. In either case,

each removed camera is treated as a “new” retraining request

with updated metadata and reprocessed through the initial

grouping logic. This allows removed cameras to form new

groups if they now share similar data distributions.

4 IMPLEMENTATION AND
EXPERIMENTAL SETUP

We implement ECCO in Python, using the Ultralytics frame-

work [49] (built on PyTorch [39]) for both model training and
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inference. The system runs on a server equipped with five

NVIDIA GeForce RTX 4090 GPUs. To emulate cameras and

their transmission to the server, we use a hybrid setup that

combines Docker-based container emulation and NS-3 [42]

simulation.

For each retraining window, we run an NS-3 simulation to

generate per-camera bandwidth traces over time, based on

GAIMD-driven, GPU-aware bandwidth allocation (§3.2.2).

Each camera is emulated as an independent Docker container

on the server. At the start of each window, each container

encodes its video at a selected frame rate and resolution

(§3.2.1) using FFmpeg. During streaming, video is split into 1-

second segments. For each segment, FFmpeg’s target bitrate

is set to the average bandwidth of the corresponding NS-

3 trace segment, so that compression adapts automatically.

Linux traffic control (tc) enforces the NS-3 trace by shaping

outgoing packets to match the simulated bandwidth.

Datasets:We evaluate ECCO using three diverse datasets. (i)

CityFlow dataset [47] includes over 3 hours of synchronized
videos captured by 40 traffic cameras at 10 city intersections.

(ii) MDOT dataset [35] consists of a total of 155 groups of

video clips (totaling more than 259𝑘 frames) captured by

five drones. We arranged video clips from the same cam-

era chronologically to create continuous video streams. (iii)

CARLA simulated datasets: The core concept behind ECCO in-

volves leveraging the correlations between multiple cameras.

To assess how these correlations affect ECCO’s performance,

it is essential to have datasets that feature videos with vary-

ing degrees of similarity. However, such datasets are rare in

public collections. To address this, we employ the CARLA

simulator [13] to create multiple datasets. CARLA is an au-

tonomous driving simulator built on the Unreal Engine [16],

which has been used in developing industrial autonomous ve-

hicle systems like Apollo [6] and Autoware [15]. We generate

traffic flows, place traffic cameras at varying distances from

each other, and record the videos. By altering the positions

of the cameras—from close proximity to widely spaced—we

generate datasets that exhibit different levels of camera simi-

larity.

Models: We demonstrate ECCO ’s performance on two ma-

chine learning tasks – object detection and instance segmen-

tation. Instance segmentation is a more complex computer vi-

sion task compared to detection. For object detection, we use

YOLO11-Nano and YOLO11-X [48] as student and teacher

models, respectively. Instance segmentation used YOLO11n-

Seg and YOLO11x-Seg for the student and teacher models.

All models are pre-trained on COCO [11] datasets.

Baselines:We compare ECCO with the following continu-

ous learning frameworks:

• Naive baseline: This baseline retrains a separate model

for each camera (no grouping) and allocates GPU resources

uniformly across all concurrent retraining jobs (without

optimizing GPU usage). Each camera uses a fixed sampling

configuration, and bandwidth is evenly shared among cam-

eras (without optimizing bandwidth efficiency).

• Ekya: Ekya [7] supports both inference and retraining

tasks on edge devices by carefully scheduling GPU re-

sources between these jobs. Unlike Ekya, ECCO allocates

the server’s GPU resources solely for retraining jobs, as

inference is handled on edge devices. For a fair comparison,

we evaluate Ekya in a retraining-only setting. Although

Ekya utilizes more advanced GPU allocation mechanisms

than the naive baseline, it retrains separate models for each

camera (independent retraining) and does not exploit po-

tential similarities in data drift across cameras for grouped

retraining, as ECCO does.

• RECL: RECL [24] selects a historical model from a shared

“model zoo” to initialize retraining, aiming to accelerate

convergence by starting from a previously trained model.

While this strategy improves over Ekya, RECL still per-

forms retraining independently for each camera. As the

official implementation is unavailable, we re-implemente

RECL’s GPU allocation algorithm following the descrip-

tions in the paper. To build the model zoo, we fine-tune a

student model on the first two minutes of video from each

camera and store each resulting model separately. RECL

also adopts an adaptive frame uploading mechanism from

AMS [26], which adjusts each camera’s sampling frame

rate based on scene dynamics. However, this adaptation

is driven purely by video content and does not align the

sampling configuration with GPU allocation, nor does it co-

ordinate bandwidth allocation. Since RECL demonstrates

substantial improvement over AMS in its evaluation, we

do not compare ECCO against AMS.

Metrics: We evaluate ECCO and the baselines along two

dimensions: (i) Inference accuracy: We use mean Average

Precision (mAP), a standard metric for both object detection

and instance segmentation tasks [11, 14]. mAP quantifies

both precision and recall across various Intersection over

Union (IoU) thresholds, reflecting the model’s accuracy in

predicting bounding boxes (detection output) and segmenta-

tion masks (segmentation output). (ii) Response time: The

duration required to retrain models to achieve a predefined

accuracy after retraining is triggered.

5 EVALUATION
We evaluate ECCO on two video analytics tasks using three

datasets. Our evaluation focuses on the following aspects:

§5.1 What is the end-to-end performance of ECCO com-

pared to leading baselines?

§5.2 How well does ECCO scale with increasing work-

loads?
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(a) Object detection (b) Instance segmentation 

Figure 6: Average accuracy across different GPU resources and shared
bandwidth resources.

Figure 7: Average retraining accuracy and
response time scaling across multiple cam-
eras.

§5.3 How does camera similarity impact ECCO’s perfor-
mance advantage over baseline methods?

§5.4 How effective are the three modules of ECCO?
§5.5 How does ECCO improve responsiveness to retraining

requests, especially under low-bandwidth conditions?

Our key findings include:

• With the same compute and communication resources,

ECCO improves mAP by 6.7%-16.6% for object detection

and 9.3%-18.1% for instance segmentation, consistently

outperforming all baselines.

• ECCO can scale to support 3.3× more cameras than base-

lines while maintaining the same accuracy.

• ECCO’s three modules jointly enable dynamic and accurate

camera grouping, improve GPU and bandwidth efficiency,

and enhance retraining quality.

• ECCO reduces response times by more than 5× compared

to baselines under low-bandwidth conditions. These ben-

efits stem from group retraining’s data aggregation and

natural model reuse within a group.

5.1 End-to-End Evaluation
Wefirst evaluate the end-to-end performance of ECCO against

three baselines under varying GPU and bandwidth con-

straints. The experiments use a fixed workload consisting

of all 6 cameras from Scene 03 of the CityFlow dataset. For

the Naive baseline and Ekya, each camera samples frames at

5 𝐹𝑃𝑆 with a vertical resolution of 960, reflecting a default

high-rate, high-resolution setting. RECL adjusts only the

frame rate. As none of the baselines consider shared or local

bandwidth constraints, we assume only a shared bandwidth

constraint in this experiment and equal bandwidth sharing

across cameras for all baselines. We consider two experi-

mental conditions: (i) varying the number of GPUs while

fixing total shared bandwidth at 6𝑀𝑏𝑝𝑠 (i.e., corresponding

to 1𝑀𝑏𝑝𝑠 per camera on average, used as a representative

constrained bandwidth setting), and (ii) varying the total

shared bandwidth while fixing the number of GPUs at 4. We

use 4 GPUs due to testbed limits, emulating a small slice of

a larger deployment. We report the average accuracy across

all cameras in Fig. 6.

Overall, ECCO consistently outperforms all baselines. Un-

der the same compute and communication budgets, it im-

proves mAP by 6.7%-16.6% for object detection and 9.3%-

18.1% for instance segmentation over the baselines. For ob-

ject detection, ECCO requires only 1.8 × −2.4× fewer GPUs

to maintain an mAP of 35%, due to its group retraining strat-

egy. By merging retraining across correlated cameras, ECCO
reduces the number of concurrent models, enabling more

GPU resources per model on average. Such efficiency is fur-

ther improved by optimizing GPU resource allocation across

groups. ECCO also achieves the same detection accuracy

(around 40% mAP) while using only 25%–33% of the band-

width required by the baselines. This benefit stems from its

transmission control module, which jointly adjusts sampling

configurations and bandwidth sharing to match GPU alloca-

tion. This design ensures that available bandwidth is used

fully and efficiently.

Among the baselines, RECL performs best due to its model

reuse and GPU allocation strategy. However, as it reduces the

sampling rate based on scene dynamics and does not adapt

to bandwidth availability, it misses the opportunity to benefit

from more training data when more bandwidth is available.

In addition, RECL introduces overhead from continuously

updating a large model zoo and retraining a model selector,

which is not reported here. Finally, there is no guarantee that

a historical model will perfectly match the current data drifts.

In contrast, ECCO directly identifies and leverages current

correlations among retraining requests without incurring

much extra costs.

5.2 Scalability of ECCO
We evaluate the scalability of ECCO by testing it on work-

loads with an increasing number of cameras. Specifically,

we use video streams from up to 22 cameras in Town 3 of

the CARLA simulator, and the detailed scene and camera

placements are visualized in the appendix. The experiment

is conducted on the object detection task using a fixed com-

pute budget of 4 GPUs and a simulated shared bandwidth

of 50𝑀𝑏𝑝𝑠 . Fig. 7 reports the average retraining accuracy
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Figure 8: Impact of camera similarity. Left: Camera place-
ment and example frames from six cameras in aCARLA town
scene. Cameras are manually grouped into high (C1–C2–C3),
medium (C1–C4–C5), and low (C1–C5–C6) similarity groups.
Right: Retraining accuracy under independent vs. group re-
training across similarity levels.

and response time (using a mAP threshold of 0.4) across all

cameras.

As workload increases, the retraining accuracy of all three

baselines drops significantly, and their response times grow

quickly. This degradation stems from their independent re-

training approach, which causes the compute demand to

grow linearly with the number of cameras. In contrast, ECCO
exhibits a more moderate degradation due to its group re-

training strategy. Compared to the best-performing baseline,

RECL, ECCO supports 3.3× more cameras using the same

resource budget to achieve a similar mAP of 46%. In terms

of responsiveness, under the 22-camera workload, ECCO
reduces the response time to 41.3%–61.1% of the baselines.

5.3 Impact of Camera Similarity
This section provides an intuitive understanding of when

ECCO’s group retraining is beneficial compared to indepen-

dent retraining, and when it is not. We evaluate how the

effectiveness of group retraining depends on the similar-

ity among cameras within a group. To visualize and con-

trol similarity, we simulate six cameras in a region of Town

10 in the CARLA simulator and show their positions and

fields of view in Fig.8. We disable ECCO’s grouping mod-

ule and manually construct three groups of three cameras

each: a high-similarity group (C1–C2–C3), where cameras

capture highly overlapping scenes with similar content; a

medium-similarity group (C1–C4–C5), where cameras are in

nearby locations with partially correlated views; and a low-

similarity group (C1–C5–C6), where cameras observe dis-

tinct and non-overlapping scenes. We simulate a sudden rain

event (weather-induced data drift) and apply group retrain-

ing to each group using a fixed 3-GPU and 3𝑀𝑏𝑝𝑠 shared

bandwidth budget. We compare the results to independent

retraining using Ekya, configured with the same resources.

As shown in Fig.8, group retraining outperforms indepen-

dent retraining when camera similarity is high, improving

mAP by up to 11.9%. However, this advantage diminishes

with decreasing similarity, and in the low-similarity group,

Cam3, @win2Cam2, @win2Cam1, @win2

Cam3Cam2Cam1 Cam3, @win6

Cam3, @win7

Retraining starts

Figure 9: An example of ECCO’s dynamic camera grouping.
Lines show the retraining accuracy over time for each camera,
differentiated by marker types. Bars below represent camera
groupings, with identical colors indicating the same group.
ECCO dynamically regroups camera 3 when it no longer
benefit from the current group due to scene divergence.

group retraining provides little improvement due to limited

shared feature across cameras.

5.4 Performance of Modules in ECCO
In this subsection, we evaluate the effectiveness of the three

modules in ECCO, respectively.

5.4.1 Dynamic camera grouping. To evaluate the ef-
fectiveness of ECCO’s dynamic camera grouping, we collect

driving videos from three vehicles navigating a town map in

CARLA. Mobile cameras introduce a more challenging sce-

nario due to rapid and frequent scene changes, which require

dynamic assessment and regrouping. Fig. 9 shows an exam-

ple of dynamic grouping in ECCO, including each camera’s

grouping status and retraining accuracy over time. We also

present video frames at selected timestamps to qualitatively

verify the grouping behavior.

As the vehicles move sequentially from suburban to urban

areas, their cameras experience similar data drift caused by

background transitions, leading to a drop in model accuracy

to below 15%mAP for all three cameras. ECCO first receives a

retraining request from camera 1 and starts a new retraining

job. Later, it adds cameras 2 and 3 to the same job upon

receiving their requests, as they share similar metadata with

camera 1, and the ongoing training model from camera 1

performs better on their data than their current local models.

As the shared model is retrained, all three cameras benefit

from improved accuracy. However, during retraining win-

dow 6, camera 3 takes a different route and enters a tunnel,

while cameras 1 and 2 continue along the city road. This

causes camera 3’s data distribution to diverge significantly.

When ECCO reassesses the group model’s performance on

camera 3 at the end of the window, it detects a significant

accuracy drop, indicating camera 3 no longer aligns with

the current group. ECCO then removes camera 3 from the

group and treats its case as a new retraining request. Since
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(b) ECCO’s GPU allocator

Figure 10: ECCO with RECL’s GPU allocator vs. its native
allocator. The lines above show average accuracy for two
distinct groups (3 cameras vs. 1 camera). The bars below rep-
resent GPU allocation over time. RECL’s allocator focuses
on overall accuracy, neglecting smaller groups, while ECCO
balances overall accuracy and fairness among cameras.

no existing group matches its updated metadata, a separate

retraining job is initiated for camera 3.

5.4.2 GPU allocator. We evaluate the performance of

ECCO’s GPU allocator by replacing it with RECL’s alloca-

tor. The experiment used four drone videos from the MDOT

dataset, featuring three drones operating in an adjacent area

and one drone in a distinct area. This setup ultimately di-

vided the drones into two groups: one with three cameras

and another with a single camera. Fig. 10 illustrates the GPU

resource allocation for both allocators and the average re-

training accuracy over time for each group. As both alloca-

tors share GPU resources on a time-shared basis, we used a

“one-hot bar” to display the GPU allocation results.

When applying the RECL allocator to our system, it al-

located most of the GPU resources to group 1 in the first

two retraining windows. As a result, group 2 experienced

resource starvation, leading to a significant accuracy gap

of up to 23% mAP between the two groups. This is because

the RECL allocator is designed to maximize the total system

accuracy, favoring the group with more cameras due to their

larger impact on overall accuracy improvement. In contrast,

ECCO offers a more balanced approach. It achieves a near-

synchronous accuracy increase among different groups. This

is because ECCO’s allocator not only seeks to improve over-

all accuracy, but it also considers fairness by boosting the

low-performance groups.

5.4.3 Resource-Aware Transmission Controller. We

evaluate our transmission controller through an ablation

study. In the ablated baseline, the controller is disabled at

each camera: all cameras sample frames at a fixed rate of

5 𝑓 𝑝𝑠 and resolution of 960. Bandwidth sharing follows the

traditional AIMD rule (𝛼 = 1, 𝛽 = 0.5) across cameras, mean-

ing each camera competes equally for shared bandwidth,

subject to its own local uplink cap. All other system compo-

nents remain unchanged. We use 6 cameras from the CARLA

dataset, evenly grouped into three groups (A, B, C), and fix
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Figure 11: Ablation study of the transmission controller. Left:
Retraining accuracy under varying shared bandwidths, show-
ing that the controller improves accuracy, especially under
limited bandwidth. Right: Per-group bandwidth traces at
9𝑀𝑏𝑝𝑠 shared bandwidth. The controller approximates GPU-
proportional bandwidth allocation, whereas the baseline de-
viates significantly from the ideal allocation target.

the GPU budget to 1 GPU. The total shared bandwidth is

varied from 3𝑀𝑏𝑝𝑠 to 15𝑀𝑏𝑝𝑠 . To emulate heterogeneous

network conditions, we cap the uplink of the two cameras

in Group A to 1𝑀𝑏𝑝𝑠 .

Fig. 11 (Left) shows the average retraining accuracy across

all cameras. As the shared bandwidth increases, the perfor-

mance bottleneck shifts from communication to computa-

tion, leading to an increase in accuracy for both methods

that eventually plateaus. ECCO reaches its peak accuracy

using only one-third of the bandwidth required by the base-

line and achieves up to 4.7% higher accuracy under limited

bandwidth (3𝑀𝑏𝑝𝑠). Fig. 11 (Right) zooms in on a retraining

window at 9𝑀𝑏𝑝𝑠 shared bandwidth, where GPU allocation

across Groups A, B, and C is approximately in a 3:5:2 ratio. It

compares the per-group bandwidth traces of the two meth-

ods against the ideal GPU-proportional target. ECCO closely

approximates the target allocation, with Groups B and C pro-

portionally sharing the remaining bandwidth after Group A’s

local constraint is saturated. In contrast, the baseline deviates

significantly due to the lack of rate differentiation. These

results demonstrate that aligning communication with com-

pute resources improves retraining accuracy, and that our

transmission controller achieves compute-aware, adaptive

bandwidth sharing under heterogeneous network conditions.

5.5 ECCO’s Benefits in Responsiveness
In §5.2, we showed that ECCO improves responsiveness to

data drift through optimized compute and communication re-

source usage. Beyond resource efficiency, here we highlight

two additional factors that contribute to its responsiveness:

natural model reuse and data aggregation within a group. To

isolate and evaluate these effects, we conduct intra-group

experiments using Group 1 in Fig.10, which includes three

drone video streams. We compare ECCO with two methods:

(i) RECL, which selects a historical model as the retraining

starting point; (ii) ECCO +RECL, which combines group re-

training with historical model reuse.

11



0 1 2 3 4
Retraining window (over time)

15

25

35

45

55

65

m
AP

 (%
)

ECCO+RECL
ECCO
RECL

Cam1
Cam2
Cam3

Figure 12: Retraining accu-
racy for each camera within
a group over time. Group re-
training enhances the initial
accuracy of later cameras nat-
urally.

100 200 300 400
Local uplink BW (Kbps)

0

50

100

150

200

250

Re
sp

on
se

 ti
m

e 
(s

) ECCO+RECL
ECCO
RECL
Ekya

Figure 13: Average response
time across cameras under
low-bandwidth conditions.
Group retraining enhances
responsiveness through data
aggregation.

Natural model reuse. Fig. 12 shows each camera’s retrain-

ing accuracy over time. For cameras 2 and 3, ECCO and ECCO
+RECL achieve up to 15% higher initial mAP than RECL. This

is because group retraining allows later retraining requests

to start from a model that has already been partially updated

using data from earlier cameras in the same group. In con-

trast, RECL relies on static historical models, which may not

perfectly match the current, drifted data distribution. For

camera 1, RECL achieves higher initial accuracy because it

reuses an appropriate historical model, whereas ECCO starts

retraining from scratch. ECCO +RECL inherits the strengths

of both approaches and consistently yields the highest initial

accuracy across all cameras.

Data aggregation. Group retraining improves responsive-

ness under poor network conditions, which are common in

mobile scenarios such as drones or vehicles. Fig. 13 shows

the average time required to reach 35% mAP under various

low-bandwidth constraints on each camera’s local uplink.

RECL and Ekya exhibit up to 5× longer response times com-

pared to group retrainingmethods. This is because individual

retraining must wait for sufficient data from a single cam-

era, whereas group retraining aggregates data streams from

multiple cameras, effectively increasing the available train-

ing data and speeding up training. Incorporating RECL into

ECCO further reduces response time by initializing retrain-

ing from a stronger starting point.

6 RELATEDWORK
Live video continuous learning: Prior studies have fo-

cused on building video analytics systems to provide high

accuracy, low cost, and fast responses. These systems employ

techniques such as model merging [38], model architecture

pruning [52, 54], model distillation [23, 27], configuration

adaptation [22, 29, 51, 57], and frame selection [9, 31]. How-

ever, all these efforts have aimed to optimize only the infer-
ence accuracy or the compute/network costs of DNN infer-
ence. In contrast, our work focuses on serving continuous

learning for live video analytics, a relatively unexplored fo-

cus area until recently. One pioneering effort in this domain

is Ekya [7], which introduces a scheduler that optimally allo-

cates GPU resources between retraining and inference tasks

on edge servers. Building on this, RECL [24] further inte-

grates model reuse with continuous retraining to enhance

resource efficiency and responsiveness to data drift in live

videos. The most recent study, AdaInf [45], manages GPU

resource allocation to ensure service level objectives (SLOs)

are guaranteed across multiple retraining models.

However, these systems share a common limitation: they

handle retraining requests from different cameras indepen-

dently, neglecting the similarity and potential for synergy be-

tween them, which can result in redundant retraining costs.

ECCO addresses this issue by recognizing and exploiting

the potential correlations between different camera feeds. By

merging similar retraining requests, we improve the resource

efficiency of the system.

Leveraging cross-camera correlations: Cross-camera cor-

relations have been well recognized and utilized in previ-

ous work. In the computer vision community, these cor-

relations are extensively studied in two main tasks: per-

son re-identification (re-id) and multi-target, multi-camera

(MTMC) tracking. Many studies have proposed new neural

network architectures that use multi-camera correlations to

address these tasks [41, 50, 53, 59]. In the systems literature,

Chameleon [22] and Spatula [19] are two notable examples.

Chameleon uses the temporal and spatial correlations among

different videos to reduce the cost of neural network con-

figuration profiling. Similarly, Spatula exploits cross-camera

correlations to lower the inference costs in applications such

as re-id and MTMC tracking.

ECCO stands apart from these approaches, as it aims to re-

duce the continuous learning costs of video analytics systems

through cross-camera correlations. Guided by this objective,

we present a new concept—group retraining. We have also

developed an end-to-end framework that optimizes the use

of compute and communication resources.

7 CONCLUSION
In this paper, we introduced ECCO, a novel video analytics

framework that significantly enhances the efficiency of con-

tinuous learning by leveraging cross-camera correlations.

ECCO smartly groups cameras experiencing similar data

drifts to retrain a shared model, thereby reducing redun-

dancy and optimizing resource utilization in terms of both

computing power and data transmission. Extensive evalua-

tions onmultiple datasets demonstrated that ECCOmarkedly

outperforms existing systems in accuracy, efficiency, and

scalability.
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A APPENDIX
Here we provide more details on the dataset generation using

the CARLA simulator. We set up fixed traffic cameras at

various locations in Town 3 within the CARLA ecosystem.

These cameras are used for assessing the scalability of ECCO
(Section 5.2). The locations and orientations of these traffic

cameras are illustrated in the figure below.

Figure 14: Overview of camera placement in Town 3, CARLA
simulator. Red markers with black arrows indicate the loca-
tion and direction of traffic cameras.

15


	Abstract
	1 Introduction
	2 Motivation and Observations
	2.1 Limitations of Independent Retraining
	2.2 Why Group Retraining?

	3 Design of ECCO
	3.1 GPU Allocation for Group Retraining
	3.2 Resource-Aware Transmission Control
	3.3 Dynamic Camera Grouping

	4 Implementation and Experimental Setup
	5 Evaluation
	5.1 End-to-End Evaluation
	5.2 Scalability of ECCO
	5.3 Impact of Camera Similarity
	5.4 Performance of Modules in ECCO
	5.5 ECCO's Benefits in Responsiveness

	6 Related Work
	7 Conclusion
	References
	A Appendix

